居ETRA Thermal Overcurrent Circuit Breakers 104/105/106-..

Description

Miniaturised single pole thermal circuit breaker with push-to-reset, tease- free, trip-free, snap action mechanism (R-type TO CBE to EN 60934). Available in versions for PCB or panel mounting, snap-in or threadneck, or as an integral type. Manual release facility optional for type 105.
Approved to CBE standard EN 60934 (IEC 60934). For higher current ratings see type 1140.

Typical applications

Motors, transformers, solenoids, printed circuit boards, hand-held machines and appliances, marine applications, caravans

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

* mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance (Ω)
0.05	285	1.8	0.28
0.08	134	2	0.25
0.1	81	2.5	0.18
0.2	22	3	0.11
0.3	8.7	3.5	0.076
0.4	5.5	4	0.067
0.5	3.3	4.5	0.051
0.6	2.45	5	≤ 0.05
0.7	1.6	6	≤ 0.05
0.8	1.45	7	≤ 0.05
1	0.9	8	≤ 0.05
1.2	0.6	10	≤ 0.05
1.5	0.4		

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 48 V (UL: AC 250 V ; DC 48 V)
Current ratings	0.05...10 A
Auxiliary circuit	0.5 A, AC 240 V , DC 28 V
Typical life	
AC $240 \mathrm{~V} \quad 0$	2,000 operations at $1 \times I_{N}$, inductive
	3,000 operations at $2 \times I_{N}$, inductive
	500 operations at $2 \times I_{N}$, inductive
DC 48 V	2,000 operations at $1 \times I_{N}$, inductive
	3,000 operations at $2 \times I_{N}$, inductive
	500 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
	200 operations at $1 \times I_{N}$, inductive
	50 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right) \mathrm{T} 60$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution
	withstand voltage degree
	2.5 kV 2
	reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage
	AC 3,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	0.05...8 A $6 \times \mathrm{I}_{\mathrm{N}} \mathrm{AC}$
	$>8 \ldots 10 \mathrm{~A} \quad 5 \times \mathrm{I}_{\mathrm{N}} \mathrm{AC}$
	$0.05 \ldots 10 \mathrm{~A} 6 \times \mathrm{I}_{\mathrm{N}}$ DC
Interrupting capacity (UL 1077)	
	$0.05 \ldots 10 \mathrm{~A} \quad \mathrm{AC} 250 \mathrm{~V} \quad 2,000 \mathrm{~A}$
	0.05...10 A DC 48 V 200 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH, to IEC 60068-2-78, test Cab
Mass	approx. 10 g

Approvals

Authority	Voltage ratings	Current ratings
VDE, SEV,	AC 240 V	$0.05 \ldots .8 \mathrm{~A}$
Kema (EN 60934)	DC 48 V	$0.05 \ldots 10 \mathrm{~A}$
CSA, UL	AC 250 V ; DC 48 V	$0.05 \ldots 10 \mathrm{~A}$
Circuit breakers with - -Si51 not approved		

Dimensions

104-P30

hole for
mounting screw M2
usable depth 4.5 mm (.177 in.) 6.5 (QC .110) cut-out dimensions

104-P30-A3
7... 10 A

104-PR-(A3)-Si51

104-PR

104-PR3

0.05... 6 A

PCB mounting holes
$0.05 \ldots 6 \mathrm{~A}$

... 10 A

Dimensions

Terminal design

104/105/106-P10

$0.05 \ldots 6$ A

104/105/106-P10-A3

104/105/106-P30-A3
$0.05 . . .6$ A

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

E-TEA Thermal Overcurrent Circuit Breakers 104/105/106-...

Installation drawings

104-...

105-...

106-...

Accessories

Water splash cover (transparent)/knurled nut assembly
(type 106-... only)
X 20128501
Degree of protection IP64

Internal connection diagrams

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-4	+14	+32	+73.4	+104	+122	+140
${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Derating factor	0.76	0.84	0.92	1	1.08	1.16	1.24

[^0]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

屏ETAOTMermal Overcurrent Circuit Breaker 127-...

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism (R-type TO CBE to EN 60934; M-type when fitted with optional manual release feature). Available in versions for plug-in or integral mounting, track mounting, or with a frame for snap-in panel mounting. The optional -KF housing is particularly suited to high humidity and other damp conditions.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, battery chargers, extra low voltage systems.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	280	1.5	0.6
0.08	100	1.8	0.4
0.1	110	2	0.3
0.15	56	2.5	0.2
0.2	29	3	0.1
0.25	18	3.5	0.06
0.3	14	4	0.06
0.35	9.8	4.5	0.05
0.4	7	5	0.05
0.45	5.9	6	0.02
0.5	4.9	7	0.02
0.6	3.4	8	0.02
0.7	2.5	10	<0.02
0.8	1.8	15	<0.02
0.9	1.5	16	<0.02
1	1.2	20	<0.02
1.2	0.8	25	<0.02

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V ; DC 28 V (UL: AC 250 V ; DC 50 V)
Current ratings	0.05... 25 A
$\begin{array}{ll}\text { Typical life } & 0.05 \ldots 16 \mathrm{~A} \\ & 17 . . .25 \mathrm{~A}\end{array}$	5,000 operations at $2 \times I_{N}$, inductive 5,000 operations at $2 \times I_{N}$, resistive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $3,000 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	type -F: $0.05 \ldots 2.5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots 5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 12 \mathrm{~A}$ 200 A $13 \ldots 25 \mathrm{~A}$ 400 A type $-\mathrm{T}:$ $0.05 \ldots .5 .5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots 5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 25 \mathrm{~A}$ 400 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	25 g (11 ms), to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	$\begin{aligned} & 127-\mathrm{F}-. .: \text { approx. } 24 \mathrm{~g} \\ & 127-\mathrm{T} . .-: \text { approx. } 35 \mathrm{~g} \end{aligned}$

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V ; DC 28 V	$0.05 \ldots .25 \mathrm{~A}$
CSA, UL	AC 250 V	$0.1 \ldots 20 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 25 \mathrm{~A}$
CCC	AC 250 V	$0.05 \ldots 25 \mathrm{~A}$
Type 127-T..-	without approvals	

票ETEA゚ Thermal Overcurrent Circuit Breaker 127-...

Dimensions

127-F-P10-H

127-T11

127-T12

Installation drawings

Terminal design 127-F-K10

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Accessories

Mounting sockets
10F-P10 (up to 16 A max. load)

10F-K10 (up to 20 A max. load)

10F-A10 (up to 16 A max. load)

Accessories for sockets (up to 20 A max. load)
2-way bus bar Y 30116602 4-way bus bar Y 30116601

Connector bus links -K10
X 210589 01/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load)
X 210589 02/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load)

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load)
X $21058802 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load)
X $21058803 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), blue (up to 20 A max. load)

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism and separate manual release (M-type TO CBE to EN 60934). Designed for bolt-on mounting with terminal block type 83-P10.

Typical applications

Extra low voltage wiring systems on all types of vehicles and marine craft.

Ordering information

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance ($\Omega)$
3	0.1	8	0.02
3.5	0.06	10	<0.02
4	0.06	12	<0.02
4.5	0.05	16	<0.02
5	0.05	20	<0.02
6	0.02	25	<0.02
7	0.02		

Approvals

Authority	Voltage rating	Current rating
CSA, UL	AC 250 V	$3 \ldots 20 \mathrm{~A}$
	DC 50 V	$3 \ldots 25 \mathrm{~A}$
BWB (VG 95345 part 9)	DC 28 V	$6 \ldots 25 \mathrm{~A}$

Technical data

Voltage rating	$\begin{aligned} & \text { DC } 28 \text { V } \\ & \text { (UL: AC } 250 \mathrm{~V} ; \mathrm{DC} 50 \mathrm{~V} \text {) } \end{aligned}$
Current ratings	3... 25 A
Typical life	5,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-40 \ldots+75{ }^{\circ} \mathrm{C}$ ($-40 \ldots 167{ }^{\circ} \mathrm{F}$)
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	3...5 A $\quad 20 \times \mathrm{I}_{\mathrm{N}}$ 6... 25 A 400 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP32 terminal area IP00
Vibration	$10 \mathrm{~g}(55-2,000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ $\text { to VG } 95210 \text { part } 28$
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to VG } 95210 \text { part } 28 \\ & \hline \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to VG 95210 part 2
Humidity	240 hours at 95 \% RH to VG 95210 part 7
Mass	approx. 25 g

Dimensions

Accessories

Mounting block 83-P10

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

[^1]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism (R-type TO CBE to EN 60934). Available in versions for threadneck panel mounting, plug-in or integral mounting. The optional -KF housing is particularly suited to high humidity and other damp conditions
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems.

Ordering information

Type No.	
	threadneck panel mounting*
	integral or plug-in mounting
	Terminal design
	P10 blade terminals A6.3-0.8 (QC .250)
	K10 screw terminals M4x6
	Special housing (optional)
	KF for tropical and high humidity conditions
	Current ratings
	0.05... 25 A
157	P10-.. - 10 A = ordering example

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.
*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resisance (Ω)
0.05	280	3	0.1
0.08	100	3.5	0.06
0.1	110	4	0.06
0.2	29	4.5	0.05
0.3	14	5	0.05
0.4	7	6	0.02
0.5	4.9	7	0.02
0.6	3.4	8	0.02
0.7	2.5	10	<0.02
0.8	1.8	12	<0.02
1	1.2	13	<0.02
1.2	0.8	15	<0.02
1.5	0.6	16	<0.02
1.8	0.2	20	<0.02
2	0.3	22	<0.02
2.5	0.2	25	<0.02

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V ; DC 28 V (UL: AC 250 V ; DC 50 V)
Current ratings	0.05... 25 A
$\begin{array}{ll}\text { Typical life } & 0.05 \ldots 16 \mathrm{~A} \\ & 17 \ldots . .25 \mathrm{~A}\end{array}$	5,000 operations at $2 \times I_{N}$, inductive 5,000 operations at $2 \times I_{N}$, resistive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC 3,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.05 \ldots 2.5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots 5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 12 \mathrm{~A}$ 200 A $13 \ldots 25 \mathrm{~A}$ 400 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 24 g

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots .25 \mathrm{~A}$
CSA, UL	AC 250 V	$0.1 \ldots 16 \mathrm{~A}$
CCC	AC 250 V	$0.05 \ldots 25 \mathrm{~A}$

E-TA․ Thermal Overcurrent Circuit Breakers 157/158-

Dimensions

157-P10

158-P10

157/158-K10

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Installation drawings

Accessories

Mounting sockets
10F-P10 (up to 16 A max. load)

10F-K10 (up to 20 A max. load)
wire cross sectional areas $2 \times$ max. $2.5 \mathrm{~mm}^{2}$ (AWG14) stranded

10F-A10 (up to 16 A max. load)

Accessories for sockets (up to 20 A max. load)
2-way bus bar Y 30116602 4-way bus bar Y 30116601

Connector bus links -K10
X 210589 01/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load) X 210589 02/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load)

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load) X 210588 02/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load) X 210588 03/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load) X 210588 04/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), blue (up to 20 A max. load)

Accessories for type 157-...

Front panel water splash cover, transparent Y 30053801 and knurled nut Y 30062801
X 20079901 (bonded to nut) (IP64)

Front panel water splash cover, transparent with special knurled nut
X 20079802 (bonded to nut) (IP64)

Splash cover (black) with hex nut (IP64) X 21073901

[^2]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted

루류TA゚ Thermal Overcurrent Circuit Breaker 1110

Description

Single pole switch/thermal circuit breaker with push-push or push-toreset actuation (S-type TO or R-type TO CBE to EN 60934) and teasefree, trip-free, snap action mechanism. Designed for snap-in panel mounting utilising round hole or industry standard fuse-holder cut-out dimensions. Featuring an ergonomically styled two colour actuator with indicator band clearly showing the tripped/OFF position
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, extra low voltage systems, household and office machines, instrumentation, marine applications, mobile homes.

Ordering information

Type	
1110	snap in panel mounting
	Mounting
	F1 panel thickness 0.8... 1.6 mm (.031-.063 in)
	F2 panel thickness 1.8...3 mm (.071-.118 in)
	Number of poles
	1 1-pole protected
	Actuator style
	2 black push button/white indicator ring, standard push-push function
	B black push button/white indicator ring, standard push-to-reset function
	Other indicator ring colours are available to special order
	$\frac{\text { Terminal design }}{\text { P1 blade terminal }}$
	Characteristic curve
	M1 medium delay
	Current ratings
	0.05...16A
1110	F1 $12-\mathrm{P} 1 \mathrm{M} 1-0.05 \mathrm{~A}=$ ordering example

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	442	2	0.25
0.08	173	2.5	0.19
0.1	110	3	0.12
0.2	27.8	3.5	0.09
0.3	12.4	4	0.07
0.4	7.0	5	0.05
0.5	4.5	6	0.04
0.6	3.1	7	≤ 0.02
0.7	2.3	8	≤ 0.02
0.8	1.7	10	≤ 0.02
1	1.1	12	≤ 0.02
1.2	0.71	16	≤ 0.02
1.5	0.41		≤ 0.02
1.8	0.38		

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V ; DC 28 V (UL: AC 250 V ; DC 50 V)
Current rating	0.05...16 A
$\begin{gathered} \hline \text { Typical life for S-type } \\ 0.05 \ldots 10 \mathrm{~A} \\ 12 \ldots .16 \mathrm{~A} \\ \text { for actuator sty } \\ 0.05 \ldots 10 \mathrm{~A} \end{gathered}$	$\mathrm{AC}+\mathrm{DC}$ 10,000 operations at $1 \times I_{N}$, inductive 6,000 operations at $1 \times I_{N}$, inductive le B: 200 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $3,000 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	AC $250 \mathrm{~V}:$ $0.05 \ldots 16 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ DC $28 \mathrm{~V}:$ $0.05 \ldots 6 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}$ $7 \ldots 10 \mathrm{~A}$ 200 A $12 \ldots .16 \mathrm{~A}$ 300 A
Interrupting capacity (UL 1077/EN60934 PC 1)	I_{N} U_{N} $0.05 \ldots 6 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$ $7 \ldots 16 \mathrm{~A}$ AC 125 V $1,000 \mathrm{~A}$ $0.05 \ldots 16 \mathrm{~A}$ DC 50 V $1,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	30 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 12 g

Approvals

Authority	Voltage ratings	Current ratings
for S-type:		
UL	AC 250 V	$0.05 \ldots 6 \mathrm{~A}$
	AC 125 V	$7 \ldots 16 \mathrm{~A}$
	DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
CSA	AC 250 V ; DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
VDE	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 10 \mathrm{~A}$

E-TFÅ Thermal Overcurrent Circuit Breaker 1110-

Dimensions

1110-F1.. / -F2..

When installing the circuit breaker apply pressure on bezel only.

Panel cut out
1110-F1..-P.M1-...A
1110-F2..-P.M1-...A

insertion force $\leq 20 \mathrm{~N}$, removal force $\geq 120 \mathrm{~N}$ insertion force $\leq 40 \mathrm{~N}$, removal force $\geq 120 \mathrm{~N}$

Installation drawing

看E-TAO Thermal Circuit Breaker 1120

Description

Double pole combined circuit breaker and ON/OFF switch with rocker actuation. Specially suited to single-phase applications. Snap-in front panel mounting. Thermal positively trip free mechanism ensures reliable overcurrent protection and safe physical isolation of the load circuit. Attractively styled, with rocker illumination optional. The status of the switching contacts is shown by the position of the rocker actuator. For high volume requirements customer-specific designs can be offered for the front bezel and the rocker.
It meets the requirements of the CBE standard EN 60934 (IEC 60934): S type, TO.
Meets the requirements regarding fire resistance of EN 60335-1 : 2007-02 Safety of household and similar electrical appliances.

Minimum ordering quantities apply!

Typical applications

Electrical motors, household appliances, office equiment, garden and hobby tools, power supplies, charging rectifiers, cable extension reels, multiple socket outlets.

Variants/Options

Technical data

Voltage rating	AC 240 V; DC 32 V DC 50 V (only double pole)
Current ratings	3... 16 A
Typical life	20,000 operations at ${ }^{\prime}$, inductive
Ambient temperature	$-20^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$
Insulation co-ordination (IEC 60664-1)	$2,5 \mathrm{kV} / 2$ reinforced insulation in operating area
Dielectric strength operating area terminal area pole/pole	test voltage AC $3,000 \mathrm{~V}$ test voltage AC 1,500 V test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V)
Switching capacity I_{cn}	AC 240 V: $200 \mathrm{~A}, 1$ and 2 pole DC 50 V: $200 \mathrm{~A}, 2$ pole DC 32 V : $200 \mathrm{~A}, 1$ and 2 pole
Switching capacity (UL 1077)	AC 277 V: 3,500 A, 1 and 2 pole DC 50 V : 2,000 A, 2 pole DC $32 \mathrm{~V}: 2,000 \mathrm{~A}, 1$ and 2 pole
Degree of protection (IEC 60529)	operating area IP40 with water splash protection IP66 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0,61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ test to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { test to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	48 hrs in 5% salt mist, test to IEC 60068-2-11,test Ka
Humidity	96 hrs in 95\% RH, test to IEC 60068-2-3, test Cab
Mass	approx. 20 g

Illumination voltage/power consumption

operating voltage	filament/neon
AC 115 V	$<1,5 \mathrm{~mA}$
AC 230 V	$<1,5 \mathrm{~mA}$

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V, DC 32 V	$3 \ldots 16$ A $1+2$ pole
	DC 50 V	$3 \ldots 16$ A 2 pole
UL, CSA, CCC	AC 277 V, DC 32 V	$3 \ldots 16$ A $1+2$ pole
	DC 50 V	$3 \ldots 16$ A 2 pole

E-FA゚ Thermal Circuit Breaker 1120

Dimensions single pole

1120-F1.0-P1..

1120-F2.1-P1..

Dimensions double pole

1120-F...-P2

Applicable for nominal dimensions without direct tolerance indication: DIN ISO $286 \pm$ IT13

Installation drawing

ZERAThermal Circuit Breaker 1120

Cut-out dimensions

version	dimension "a"
$1120-\mathrm{F} 1 . .-\ldots$	$1-2.5 \mathrm{~mm} / .039-.098$
$1120-\mathrm{F} 2 . .-\ldots$	$1-2 \mathrm{~mm} /$

Applicable for nominal dimensions without direct tolerance indication: DIN ISO $286 \pm$ IT13

Internal connection diagrams
AC 240 V DC 32 V

AC 240 V, DC 50 V
double pole
one pole thermally protected

double pole without protection

T1 - thermal characteristic curve

8 ... 16 A

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below.

Ambient temperature ${ }^{\circ} \mathrm{C}$
Derating factor

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Miniaturised single pole thermal circuit breaker with push-to-reset teasefree, trip-free, snap action mechanism (R-type TO CBE to EN 60934). Available in versions for panel mounting, snap-in or threadneck, or as an integral type. For lower current ratings see types 104, 105, 106. Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, hand-held machines and appliances.

Ordering information

Type No.	
1140	single pole thermal circuit breaker
	Mounting
	E2 integral mounting
	F1 snap-in panel mounting
	G1 threadneck panel mounting $3 / 8-27$ UNS with hex nut and knurled nut*
	G4 threadneck panel mounting 3/8-27UNS with knurled nut*
	Number of poles
	1 1-pole protected
	Actuator style
	1 black push button (standard)
	Terminal design
	P1 blade terminals A6.3-0.8 (QC .250)
	Characteristic curve
	M1 medium delaye
	Current ratings
	3.5...16 A
1140	F1 1 1- P1 M1-10A = ordering example

*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
3.5	0.06	10	<0.02
4	0.04	12	<0.02
5	0.03	13	<0.02
6	0.02	15	<0.02
7	<0.02	16	<0.02
8	<0.02		

Approvals

Authority	Voltage ratings	Current ratings
VDE	AC $240 \mathrm{~V} ;$ DC 48 V	$3.5 \ldots 16 \mathrm{~A}$
CSA, UL	AC 250 V ; DC 50 V	$3.5 \ldots 16 \mathrm{~A}$
Kema (EN 60934)	AC 240 V ; DC 48 V	$3.5 \ldots 16 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 48 V (UL: AC 250 V ; DC 50 V)
Current ratings	3.5...16 A
Typical life $\begin{array}{ll} \mathrm{AC}+\mathrm{DC} & 3.5 \ldots . .8 \mathrm{~A} \\ & 9 \ldots . .16 \mathrm{~A} \end{array}$	200 operations at $2 \times I_{N}$, inductive 1,000 operations at $2 \times \mathrm{I}_{N}$, resistive 100 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C} \quad\left(-4 \ldots+140^{\circ} \mathrm{F}\right) \mathrm{T} 60$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC 3,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{array}{ll} 3.5 \ldots 8 \mathrm{~A} & 8 \times \mathrm{I}_{\mathrm{N}} \\ 10 \ldots . .16 \mathrm{~A} & 120 \mathrm{~A} \end{array}$
Interrupting capacity (UL 10777)	I_{N} U_{N} $3.5 \ldots 16 \mathrm{~A}$ DC 50 V 200 A $3.5 \ldots 7 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$ $8 \ldots 16 \mathrm{~A}$ AC 250 V $2,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40 050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 10 g

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Accessory

Water splash cover/knurled nut assembly, transparent X 20128501 (IP64)

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section $9-$ Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-4	+14	+32	+73.4	+104	+122	+140
${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Derating factor	0.76	0.84	0.92	1	1.08	1.16	1.24

Installation drawings

1140-F...

1140-E...

1140-G...

ZETRA Thermal Overcurrent Circuit Breaker 1140
 (2-pole)

Description

Miniaturised double pole thermal circuit breaker with push-to-reset tease-free, trip-free, snap action mechanism (R-type TO CBE to EN 60934). Threadneck panel mounting. Suitable for line and neutral switching - the thermal actuator operating on one pole simultaneously opens both poles under overload conditions. Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, hand-held machines and appliances. Especially suited to AC duties where the correct orientation of line/ neutral is not known/cannot be guaranteed

Ordering information

Type No.	
1140	double pole threadneck panel mounting
	Mounting
	G1 threadneck panel mounting 3/8-27UNS, with hex nut and knurled nut*
	G4 threadneck panel mounting 3/8-27UNS, with knurled nut*
	Number of poles
	5 double pole, 1-pole protected
	Actuator style
	1 black push button (standard)
	Terminal design
	P7 blade terminals DIN 46244-C (QC 2x.110)
	Characteristic curve
	M1 medium delay
	Current ratings
	0,05...16 A
1140	G1 5 1 - P7 M1-16 A ordering example

*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance (Ω)
0.05	345	1.8	0.3
0.06	240	2	0.3
0.08	142	2.5	0.2
0.1	88	3	0.1
0.2	24	3.5	0.08
0.3	9.9	4	0.07
0.4	5.9	5	0.05
0.5	3.7	6	0.04
0.6	2.2	7	<0.02
0.7	1.9	8	<0.02
0.8	1.4	10	<0.02
1	0.9	12	<0.02
1.2	0.6	15	<0.02
1.5	0.5	16	<0.02

Approvals

Authority	Voltage ratings	Current ratings
VDE	AC 240 V; DC 48 V	$0.05 \ldots .16 \mathrm{~A}$
CSA, UL	AC $250 \mathrm{~V} ;$ DC 50 V	$0.05 \ldots 16 \mathrm{~A}$
Kema (EN 60934)	AC $240 \mathrm{~V} ;$ DC 48 V	$0.05 . .16 \mathrm{~A}$

Technical data
For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 48 V (UL: AC 250 V ; DC 50 V)
Current ratings	0.05...16 A
Typical life AC + DC $0.05 \ldots 3 \mathrm{~A}$ $3.5 \ldots 8 \mathrm{~A}$ $9 \ldots .16 \mathrm{~A}$	300 operations at $2 \times I_{N}$, inductive 3,000 operations at $2 \times I_{N}$, resistive 200 operations at $2 \times I_{N}$, inductive 1,000 operations at $2 \times I_{N}$, resistive 100 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right) \mathrm{T} 60$
Insulation co-ordination (IEC 60664 and 606664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area pole/pole	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{array}{ll} 0.05 \ldots 3 \mathrm{~A} & 6 \times \mathrm{I}_{\mathrm{N}} \\ 3.5 \ldots 8 \mathrm{~A} & 8 \times \mathrm{I}_{\mathrm{N}} \\ 10 \ldots 16 \mathrm{~A} & 120 \mathrm{~A} \end{array}$
Interrupting capacity (UL 1077)	I_{N} U_{N} $0.05 \ldots 16 \mathrm{~A}$ DC 50 V 200 A $0.05 \ldots 7 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$ $8 \ldots .16 \mathrm{~A}$ AC 250 V $2,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40 050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 13 g

Dimensions

1140-G15...

blade terminal
DIN 46244-A6.3-0.8 (QC .110)

Installation drawing

Accessories

Water splash cover/knurled nut assembly, transparent X 20128501 (IP64)

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

[^3]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Thermal circuit breaker, with controlled self-resetting mechanism, specially suited to installation in inaccessible locations. Under overload conditions the circuit breaker contacts will open to protect the load circuit. A low current excitation circuit ensures that the contacts remain open thereby avoiding the hazards of automatic reset operation. The circuit breaker is reset by switching off the supply circuit for a short period. Class 2 device, contacts stay open until voltage is removed. Type II to SAE J 553.

Typical applications

Automotive and marine extra low voltage wiring systems and components, battery powered appliances.

Ordering information

Type No.	
1160 single pole plug-in type	
Design standard	
02 standard version 12 V	
Current ratings	
12, 15, 20, 30 A	
1160-02-12A ordering example	
Standard current ratings and typical voltage drop values	
Current rating (A) Voltage drop (mV)	
12	< 150
15	< 150
20	< 150
30	< 150

Technical data

Voltage rating	DC 12 V
Current ratings	12... 30 A
Typical life	300 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Holding current	<0.6 A
Reset time at $23^{\circ} \mathrm{C}$ after 5 s of load with U_{N}	$<35 \mathrm{sec}$
Interrupting capacity (০-০-০)	200 A, L/R = 2.5 ms
Degree of protection (IEC 60529/DIN 40050)	housing area IP54 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 6 g

Dimensions

Accessories
Sockets available to special order.

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

[^4]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Compact single pole thermal circuit breaker with push-to-reset, tease free, trip free, snap action mechanism and separate (colour coded) manual release. Combining full feature circuit breaker protection and convenience with low cost of ownership benefits. Fitted with blade terminals for plug-in mounting.
Type III to SAE J 553
Version 1176 is available especially for the automotive industry (current ratings correspond to those of blade fuses).

Typical applications

Extra low voltage wiring systems on all types of vehicles and marine craft.

Technical data

Voltage rating	DC 28 V
Current ratings	3... 25 A (30 A upon request)
Typical life	at rated current: 3... 25 A 6,000 operations at I_{N} 3 ... 20 A 3,000 operations at $2 \times I_{N}$ $25 \mathrm{~A} \quad 1,000$ operations at $2 \times I_{N}$
Ambient temperature	-40... $+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$
Interrupting capacity I_{cn}	400 A
Ultimate short-circuit breaking capacity	≥ 1 break operation at 2,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 13 g

Dimensions

1170-21

1170-22

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} 7+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-40	-22	-4	+14	+32	+50
Ambient temperature ${ }^{\circ} \mathrm{C}$	-40	-30	-20	-10	0	+10
Derating factor	0,77	0,80	0,84	0,89	0,94	0,96
Ambient temperature ${ }^{\circ} \mathrm{F}$	+73.4	+104	+122	+140	+158	+185
Ambient temperature ${ }^{\circ} \mathrm{C}$	+23	+40	+50	+60	+70	+85
Derating factor	1	1,08	1,16	1,24	1,33	1,42

Accessories

Socket 12-P10

Socket 12-J20

Socket 12-A10

Dimensions for surface mounting

Other sockets available to special order
Labels: Weidmüller, D-33102 Paderborn

Ordering information Mounting socket 12

Accessories for mounting socket 12

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load)
X $21058804 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), blue (up to 20 A max. load)

Bus bar (supplied as a complete package)
(up to 100 A max. load)
X 21115701 with termina
X 21115702 without terminal

[^5]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

FETRAO Thermal Overcurrent Circuit Breaker 1180-

Description

Miniaturised single pole thermal circuit breaker with switching function optional (push-push actuation). Reliable snap-acting and trip-free mechanism. Approved to CBE standard EN/IEC 60934. S-type, TO. Blade terminals fitting into sockets for rail mounting.

Typical applications

Protection of loads in power distribution systems in control cabinets and process control.

Ordering information

Type No.	
1180	single pole thermal circuit breaker, plug-in mounting
	Versions
	01 with switching function, without label
	02 reset function only, without label
	Current rating range
	0.1... 10 A
1180-	01-1 A ordering example

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.1	81	2	0.25
0.2	22	2.5	0.18
0.25	14	3	0.11
0.3	8.7	3.5	0.08
0.4	5.5	4	0.07
0.5	3.4	5	≤ 0.05
0.6	2.5	6	≤ 0.05
0.7	1.7	7	≤ 0.05
0.8	1.5	8	≤ 0.05
1	0.9	10	≤ 0.05
1.5	0.4		

Approvals

Authority	Voltage rating	Current ratings
VDE	AC 250 V; DC 65 V	$0.1 \ldots 10 \mathrm{~A}$
UL	AC 250 V ; DC 72 V	$0.1 \ldots 10 \mathrm{~A}$
CSA	AC 250 V ; DC 72 V	$0.1 \ldots 10 \mathrm{~A}$

Technical data

Voltage rating	AC 250 V; DC 65 V (UL, UL Canada: AC 250 V; DC 72 V)
Current ratings	0.1... 10 A
Typical life	6,000 operations at $1 \times I_{N}$ (low-inductance) 3,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$ (inductive) 500 operations at $2 \times \mathrm{I}_{\mathrm{N}}$ (inductive)
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}$ (T 60) -4...+140 ${ }^{\circ} \mathrm{F}$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area installation area	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{aligned} & 0.1 \ldots 5 \mathrm{~A} \quad 6 \times \mathrm{I}_{\mathrm{N}} \\ & 6 \ldots 10 \mathrm{~A} \quad 8 \times \mathrm{I}_{\mathrm{N}} \\ & \hline \end{aligned}$
Interrupting capacity (UL 1077)	AC $250 \mathrm{~V}: 2,000 \mathrm{~A}$ DC $65 \mathrm{~V}: 200 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration without terminal block	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis and to EN 50155
Shock without terminal block	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 15 g

ETFA Thermal Overcurrent Circuit Breaker 1180-

Dimensions

Internal connection diagram

Shock directions

Typical time/current characteristics at $+23^{\circ} \mathrm{C} 7+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Derating factor		0.8	0.76	0.84	0.92	1	1.08	1.16	1.24

Note: When several devices are mounted together, each device should only carry 80% of its rating or it must be overrated accordingly.

1 Label for circuit breaker 1180, surface for marking $4.5 \times 5 \mathrm{~mm}$ (packaging quantity 120 pcs)
Y 30737401
2 Terminal block for DIN rail mounting, with screw terminals up to $6 \mathrm{~mm}^{2}$ conductor, width 8.2 mm , dimensions $64 \times 42.5 \times 8.2 \mathrm{~mm}$,
headroom over the upper rail edge with circuit breaker fitted (OFF position) 84 mm .
Approvals: UL 300 V / 30 A / AWG 26-8
X 22223301
3 Terminal block for DIN rail mounting see item 2, but with LED DC 24 V (lighted after tripping); current rating LED 2 mA
X $222 \mathbf{2 3 3} 02$
4 Bus connection for potential bridging of several terminal blocks see item 2 and 3 (10-pole, separable, mounting hardware included), max. current rating 34 A
X $222 \mathbf{2 3 2} 01$
5 Insulation barriers for insertion between two circuits (packaging quantity 10 pcs)
Y 30737301
6 Label for terminal block, see item 2 and 3,
surface for marking $8 \times 10 \mathrm{~mm}$
(packaging quantity 10 pcs)
Y 30737501

Vibration	with terminal block X $222 \mathbf{2 3 3 0 1}$ and X 222 233 02 $5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis and EN 50155
Shock	with terminal block X $222 \mathbf{2 3 3 0 1}$ and X 222 233 02 $25 \mathrm{~g} \mathrm{(11} \mathrm{ms)}$ to IEC $60068-2-27$, test Ea

1 Label for circuit breaker 1180, surface for marking $4.5 \times 5 \mathrm{~mm}$ (packaging quantity 120 pcs)
Y 30737401
7 Terminal block for DIN rail mounting, with spring-loaded terminals up to $4 \mathrm{~mm}^{2}$ conductor, width 8.2 mm , dimensions $68.5 \times 36.5 \times 8.2 \mathrm{~mm}$, headroom over the upper rail edge with circuit breaker fitted (OFF position) 82 mm .
UL approval pending.
X 22231601
8 Terminal block for DIN rail mounting see item 7, but with LED DC 24 V (lighted after tripping); current rating LED 2 mA X 22231502

9 Jumper 2pole, max. current rating 32 A for terminal blocks items 7 and 8 and feed supply terminal item 11. X 22231801

10 Jumper 3pole, max. current rating 32 A for terminal blocks items 7 and 8 and feed supply terminal item 11. X 22231802

11 Feed supply terminal with spring-loaded terminals up to $6 \mathrm{~mm}^{2}$ conductor, width 8.2 mm , suitable for use with jumpers items 9 and 10 (power distribution). X 22231701

12 Cover for feed supply terminal item 11 for closing the open side at the end of an assembly.
Y 30750701
13 Label for terminal block items 7 and 8, and feed supply terminal item 11, surface for marking $7.5 \times 5 \mathrm{~mm}$ (packaging quantity 50 pcs)
Y 30750801

Dimensions X 22231601

Vibration	with terminal blocks X 22231601 and X 22231502 vibration axis 3-4: $3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ other axes: $5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis and EN 50155
Shock	with terminal blocks X 22231601 and X 22231502 25 g (11 ms) to IEC 60068-2-27, test Ea

[^6]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

豆

Description

Miniaturised single pole rocker switch/thermal circuit breaker combining ON/OFF switching and extremely fast overload performance in a single component (S-type TO CBE to EN 60934/IEC 934). Under overload conditions an internal neon (filament bulb for low voltages) illuminates to give a clear signal of the tripped status of the mechanism and thereby the cause of power interruption, suffix -B. Alternatively the illumination can be conventionally wired to indicate the ON status of the device, suffix -E. Returning the rocker switch through the OFF position and back ON will reset the mechanism and restore the supply. Largely temperature-insensitive. Complies with CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, PCBs, hand-held machines, appliances, instrumentation.

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Technical data

Voltage rating	AC 240 V; DC 28 V (DC 50 V upon request) (UL: AC 250 V; DC 48)
Current rating range	0.63... 10 A
Typical life circuit 1-3 protection circuit 1-2	30,000 operations for $I_{N} \leq 6.3$ A AC/DC 10,000 operations for $I_{N}>6.3$ A AC 3,000 operations for $I_{N}>6.3$ A DC 300 break operations at $2 \times I_{N}$
Ambient temperature	$-20 \ldots+70{ }^{\circ} \mathrm{C}\left(-4 \ldots+158{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $3,000 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.63 \ldots 2 \mathrm{~A}$ $12 \times I_{N}$ $2.5 \ldots 8 \mathrm{~A}$ $8 \times I_{N}$, AC max. 50 A 10 A $6 \times \mathrm{I}_{N}$ $3.15 \ldots 10 \mathrm{~A}$ $10 \times I_{N}, \mathrm{DC}$
Interrupting capacity (UL 1077)	$0.63 \ldots 10 \mathrm{~A}$ $2,000 \mathrm{~A}$ AC 250 V $0.63 \ldots .8 \mathrm{~A}$ 200 A DC 50 V $0.63 \ldots . .5 \mathrm{~A}$ 200 A DC 60 V
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	96 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 9 g

Approvals

Authority	Voltage ratings	Current ratings
UL, CSA	AC 250 V	$0.63 \ldots 10 \mathrm{~A}$
UL	DC 50 V	$0.63 \ldots 8 \mathrm{~A}$
	DC 60 V	$0.63 \ldots 5 \mathrm{~A}$

쿠류TAP Thermal Overcurrent Circuit Breaker 1410-F1

Dimensions

1410-F...-....-....B.

1410-F...-....-....E.

panel cut-out

Internal connection diagrams

1410-F...-.........B.

lamp current:
$24 \mathrm{~V}=35 \mathrm{~mA}$
$115 \mathrm{~V}<1 \mathrm{~mA}$
$230 \mathrm{~V}<1 \mathrm{~mA}$

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Installation drawing

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

居E-TAThermal Overcurrent Circuit Breaker 1410-L1/L4

Description

Single pole press-to-reset thermal circuit breaker with extremely fast overload switching performance (R-type TO CBE to EN 60934).
Miniaturised construction minimises PCB real estate required. PCB mounting or integral mounting. Largely temperature-insensitive.

Typical applications

Motors, transformers, solenoids, PCBs, hand-held machines, appliances, instrumentation.

Ordering information

Type	
1410	single pole circuit breaker
	Configuration
	L integral mounting or PCB mounting
	Mounting
	1 footprint 16.3x4.6
	4 footprint 17.5×4.6
	Number of poles
	1 1-pole, thermally protected
	Hardware
	0 without
	Terminal design
	L1 solder pins 1.8×0.8 silver-plated (-L1 only)
	P3 blade terminals DIN 46244-A4.8-0.5 silver-plated (only -L4)
	P4 blade terminals DIN 46244-A4.8-0.8 silver-plated (only -L4)
	Characteristic curve
	F1 fast acting
	Actuator
	S reset button (1410-L1)
	E round reset slide (1410-L4)
	Actuator colour
	01 black (for -L1)
	03 white-yellow (for -L4)
	04 red (for -L4)
	Current ratings
	0.63...10 A
1410-L 110 - L1 F1-S 01-0.8 A ordering example	

*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.63	1.8	3.15	<0.12
0.8	1.7	4	<0.1
1	1.3	5	<0.1
1.5	<1	6.3	<0.1
1.8	<1	8	<0.1
2	<1	10	<0.1
2.5	<0.15		

Approvals

Authority	Voltage rating	Current ratings
VDE	AC 240 V	$0.63 \ldots 10 \mathrm{~A}$
	DC 50 V	$0.63 \ldots . .2 \mathrm{~A}$
	DC 28 V	$2.5 \ldots 10 \mathrm{~A}$
UL, CSA	AC 250 V ; DC 50 V	$0.63 \ldots .10 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information
 For further details please see chapter: Technical Information

Voltage rating	AC 240 V; DC 28 V (UL: AC 250 V ; DC 50 V)
Current rating range 1-2	0.63...10 A
Typical life	
AC 240 V : 0.63...2.25 A	500 break operations at $2 \times I_{N}$, inductive
2.5..10 A	500 break operations at $2 \times I_{N}$, resistive
DC 50 V : 0.63...2.25 A	500 break operations at $2 \times I_{N}$, inductive
DC 28 V : $2.5 \ldots 10 \mathrm{~A}$	500 break operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-20 \ldots+70{ }^{\circ} \mathrm{C}\left(-4 \ldots+158{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn} (o-o-০)	$\begin{array}{ll} 0.63 \ldots 2 \mathrm{~A} & 12 \times \mathrm{I}_{\mathrm{N}} \\ 2.5 \ldots 8 \mathrm{~A} & 8 \times \mathrm{I}_{\mathrm{N}}, \mathrm{AC} \max .50 \mathrm{~A} \\ 10 \mathrm{~A} & 6 \times \mathrm{I}_{\mathrm{N}}, \mathrm{AC} \\ 3.15 \ldots 10 \mathrm{~A} & 10 \times \mathrm{I}_{\mathrm{N}}, \mathrm{DC} \end{array}$
Interrupting capacity (UL 1077)	$0.63 \ldots 10 \mathrm{~A}$ $2,000 \mathrm{~A}$ AC 250 V $0.63 \ldots 10 \mathrm{~A}$ 200 A DC 50 V
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	96 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 5 g

0.63... 10 A 2,000 A AC 250 V
operating area IP40
$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, (11 ms) to IEC 60068-2-27, test Ea
hours at 5% salt mist

96 hours at 95 \% RH approx. 5 g

Dimensions

1410-L110-L1F1-S01

1410-L410-P3F1-E...

1410-L410-P4F1-E...

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Installation drawings

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

层E-TAThermal Overcurrent Circuit Breaker 1410-L2/G1

Description

Single pole press-to-reset thermal circuit breaker with extremely fast overload switching performance (R-type TO CBE to EN 60934). Single hole threadneck, PCB or integral mounting with a choice of designs. Miniaturised construction minimises PCB real estate required. Type 1410-L2 and 1410-G1 versions feature changeover contacts suitable for providing status output signals. Largely temperature-insensitive.

Typical applications

Motors, transformers, solenoids, PCBs, hand-held machines, appliances, instrumentation.

Ordering information

Type No.
1410 single pole circuit breaker
Configuration
L PCB mounting or integral mounting
G threadneck panel mounting or PCB mounting Mounting
1 threadneck 3/8-27UNS-2A (1410-G)
2 PCB 10.15×7.62 (1410-L)
3 PCB 10.15 without shunt terminal (1410-L)
Number of poles
1 1-pole, thermally protected
Hardware
0 without
1 with hexnut and knurled nut (only1410-G)
>5 pcs hexnut and knurled nut bulk shipped
2 without hexnut and knurled nut and without shunt terminal (only 1410-G)
4 with hexnut and knurled nut,
without shunt terminal (only 1410-G)
8 with actuator guard and marking CB.
(only 1410-G)
Terminal design
L2 solder pins 1×0.8 silver-plated
P2 blade terminals DIN 46244-A2.8-0.8 silver-plated (only -G)
P3 blade terminals DIN 46244-A4.8-0.5 silver-plated (only -G)
Characteristic curve
F1 fast acting
Actuator
B flat reset-slide (only 1410-G)
S reset slide/button
Actuator colour
01 black (for -G1..)
02 white (for -L2..)
04 red (for 1410-G..-...B)
Current ratings
$0.63 . . .10 \mathrm{~A}$
1410-L 21 0-L2 F1-S 02-0.8 A ordering example
*mounting hardware bulk shipped

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance (Ω)
0.63	1.8	3.15	<0.12
0.8	1.7	4	<0.1
1	1.3	5	<0.1
1.5	<1	6.3	<0.1
1.8	<1	8	<0.1
2	<1	10	<0.1
2.5	<0.15		

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 28 V (UL: AC 250 V ; DC 50 V)
Current rating range 1-2	0.63... 10 A
Auxiliary circuit 1-3	$0.2 \times \mathrm{I}_{\mathrm{N}}$ max. $1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V}$
Typical life	
AC $240 \mathrm{~V}: 0.63 . .2 .25 \mathrm{~A}$	500 break operations at $2 \times I_{N}$, inductive
2.5... 10 A	500 break operations at $2 \times I_{N}$, resistive
DC $50 \mathrm{~V}: \quad 0.63 . .2 .25 \mathrm{~A}$	500 break operations at $2 \times I_{N}$, inductive
DC 28 V : $2.5 \ldots 10 \mathrm{~A}$	500 break operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-20 \ldots+70^{\circ} \mathrm{C}\left(-4 \ldots+158{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn} (o-o-o)	$0.63 \ldots 2 \mathrm{~A}$ $12 \times \mathrm{I}_{\mathrm{N}}$ $2.5 \ldots 8 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}, \mathrm{AC} \max .50 \mathrm{~A}$ 10 A $6 \times \mathrm{I}_{\mathrm{N}}, \mathrm{AC}$ $3.15 \ldots 10 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}, \mathrm{DC}$
Interrupting capacity (UL 1077)	$0.63 \ldots 10 \mathrm{~A}$ $2,000 \mathrm{~A}$ AC 250 V $0.63 \ldots 10 \mathrm{~A}$ 200 A DC 50 V
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	48 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	96 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 5 g

Approvals		
Authority	Voltage rating	Current ratings
VDE	AC 240 V	$0.63 \ldots 10 \mathrm{~A}$
	DC 50 V	$0.63 \ldots . .2 \mathrm{~A}$
	DC 28 V	$2.5 \ldots 10 \mathrm{~A}$
UL, CSA	AC $250 \mathrm{~V} ;$ DC 50 V	$0.63 \ldots 10 \mathrm{~A}$

园터TAThermal Overcurrent Circuit Breaker 1410-L2/G1

Dimensions

1410-L210-L2F1-S02

$\varnothing 4.6$
1410-G114-P3F1-B04-...

1410-G118-L2F1-B04-...

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Installation drawings

1410-L2..

> Installation behind a cover which can only
be removed by means of a tool

1410-G...

[^7]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Miniaturised single pole press-to-reset cycling trip free thermal circuit breaker designed for automotive fuse block installation.
Extends the benefits of circuit breaker performance and convenience to applications which are cost critical. Colour-coded housing caps or manual release buttons available.

Version 1616 is available especially for the automotive industry (current ratings correspond to those of blade fuses).

Typical applications

Extra low voltage wiring systems on all types of vehicles and marine craft.

Ordering information

Type No.		
1610 single pole automotive circuit breaker		
Voltage rating		
21 DC 28 V		
H2 DC 28 V , with manual release facility (type III to SAE J 553)		
92 DC 12 V , autoreset (type I to SAE J 553)		
Current ratings		
	5 6 8 10	$\begin{array}{llll}15 & 20 & 25 & 30\end{array}$
1610-21-8A ordering example		
Current ratings, typical voltage drop values and colour coding		
Current rating (A)	Voltage drop (mV)	Actuator colour manual release (1610-H2) or housing cap colour (1610-21)
5	< 150	light-brown
6	< 150	green
8	< 150	honey
10	< 150	red
15	< 150	blue
20	< 150	yellow
25	< 150	pearl
30	< 150	light-green

Homologations

Homologation

UL 1500 Ignition Protected

Technical data

Voltage rating	$\begin{aligned} & \text { 1610-92: DC } 12 \text { V } \\ & \text { 1610-21/1610-H2: DC } 32 \text { V } \end{aligned}$
Current ratings	5...30 A
Service short-circuit breaking capacity	300 operations at $\leq 50 \mathrm{~A}$
Reset period for 1610-92 (at $23^{\circ} \mathrm{C}$)	≤ 15 s
Ambient temperature	$-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 (-21/-H2) operating area IP54 (-92) terminal area IP00
Ultimate short-circuit breaking capacity	≥ 3 break operations at 150 A , or ≥ 1 break operation at $2,000 \mathrm{~A}$
Vibration (with mounting socket 12)	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock (with mounting socket 12)	$\begin{aligned} & 50 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH, to IEC 60068-2-78, test Cab
Mass	approx. 5 g

N.B.

It is good practice to switch off the vehicle's ignition system before re-setting the circuit breaker.
Free travel of the actuator must be ensured.

园追TAThermal Automotive Circuit Breaker 1610-...

1610-21

1610-H2

1610-92

Internal connection diagrams

1610-21	1610-H2	1610-92

Typical time/current characteristic curve

르류Na Thermal Automotive Circuit Breaker 1610-

Accessories

Socket 12-P10

Socket 12-J20

Socket 12-A10

Dimensions for surface mounting

Other sockets available to special order
Labels: Weidmüller, D-33102 Paderborn

Ordering information Mounting socket 12

Labels: Weidmüller, D-33102 Paderborn

Accessories for mounting socket 12

Connector bus links -P10

X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), blue (up to 20 A max. load)

Bus bar (supplied as a complete package)
(up to 100 A max. load
X 21115701 with terminal
X 21115702 without termina

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Very cost effective design to meet international requirements. No exposed metal parts which are, or could become, current-carrying except for terminals. R-type TO CBE to EN 60934.

- Manual reset, cycling trip free mechanism
- Extremely small and lightweight
- UL, CSA, VDE and EN 60934 (IEC 60934) approved

Typical applications

Battery chargers, consumer products, power supplies, motors.

Ordering information

Type No.

1658 single pole thermal circuit breaker
Threadneck design
G21 manual reset type, 3/8"-27 threadneck
G41 manual reset type, 7/16"-28 threadneck
A21 auto reset type, 3/8"-27 threadneck
A41 auto reset type, 7/16"-28 threadneck
A00 auto reset type, without threadneck
F01 snap in
Hardware
00 no hardware
01 one PAL nut, bulk
02 one PAL nut, one knurled nut, bulk
03 one PAL nut mounted
04 one PAL nut, one knurled nut, mounted
05 one PAL nut mounted, one knurled nut, bulk
06 one knurled nut, bulk
07 one hex nut, bulk
08 two hex nuts, bulk
Terminals
P10 blade terminals A6.3-0.8 (QC .250)
P13 blade terminals A6.3-0.8 (QC .250), 90°
S80 straight screw terminals*
S83 90° bent screw terminals*
Current ratings
... 30 A
1658-G21-02- P10-5 A Ordering example

* Screws and lock washers bulk shipped

Standard current ratings and typical voltage drop values

Current rating (A)	Voltage drop $(\mathbf{m V})$	Current rating (A)	Voltage drop $(\mathbf{m V})$
5	≤ 150	12	≤ 140
6	≤ 150	15	≤ 240
7	≤ 150	16	≤ 240
8	≤ 150	20	≤ 240
9	≤ 150	25	≤ 240
10	≤ 140	30	≤ 240

Technical data

For further details please see chapter: Technical Information

Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC 3,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$5 \ldots . .7 \mathrm{~A} \quad 180 \mathrm{~A}$
	$8 \ldots 30 \mathrm{~A} \mathrm{200} \mathrm{A}$

Approvals

Authority	Voltage rating	Current ratings	
VDE (EN 60934)	AC 240 V ; DC 28 V	5... 25 A	
UL	AC 240 V	5...16 A	1658-G../F..
	AC 120 V	18...30 A	1658-G../F..
	AC 120 V	5... 30 A	1658-A...
	DC 32 V	5...30 A	1658-G../F..
	DC 28 V	5...30 A	1658-A..

루류․ Thermal Overcurrent Circuit Breaker 1658-..

Dimensions

A00

A21 tightening torque max. 0.8 Nm

G21 tightening torque max. 0.8 Nm

A41

G41

F01

Caution:
Please keep a tight grip on the unit while removing the female connectors.

See ordering information for mounting hardware

Terminal design

Installation drawing

Internal connection diagram

Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-4	+14	+32	+73.4	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50	+60
Derating factor	$\mathrm{I}_{\mathrm{N}}>7 \mathrm{~A}$	0.83	0.85	0.9	1	1.1	1.18	1.25
	$\mathrm{I}_{\mathrm{N}} \leq 7 \mathrm{~A}$	0.74	0.76	0.82	1	1.23	-	-

Accessories

Mounting nut 3/8", 27-thread
 Y306 67101
 Mounting nut 7/16", 28-thread Y303 20001

Knurled nut 3/8", 27-thread plastic (standard)
Y307 11702

Knurled nut 7/16", 28-thread nickel-plated brass Y302 29403

Knurled nut 3/8", 27-thread
nickel-plated brass
Y300 19003

Hex nut 3/8", 27-thread
nickel-plated brass
Y300 19201

Press to Reset Plate for 3/8"
thread, aluminium
Y 30105902

Hex nut 7/16", 28-thread nickel-plated brass Y302 29501

Press to Reset Plate for 7/16" thread, aluminium Y 30273201

Accessories

Reset button seal for 3/8", 27-thread,
short
X201 28501

long
X200 79901

Reset button seal for 7/16", 28-thread,
short
long
X222 11902

7/16-28 UNS-2B

FETRA Thermal Overcurrent Circuit Breaker 3120-F..

Description

An extremely versatile range of rocker switch/thermal circuit breakers (Stype TO CBE to EN 60934 with trip free mechanism) offering the choice of single pole, double pole with single pole protection, and double pole with protection on both poles. Designed for snap-in panel mounting with versions available for three different panel cut-out sizes. Illumination is optional and there is a range of colours and markings for the rocker. Under overload conditions the rocker returns to the OFF position. 6-way frame for 3120-F5 available upon request.
Any one of the following additional function modules can be supplied factory fitted to the rear of the switch/circuit breaker.

- Under voltage release coil (for double pole versions only).
- Magnetic trip coil for short circuit protection.
- Magnetic trip coil for remote relay trip.
- Auxiliary contacts for status signalling.
- Mechanical slide interlock.

Approved to CBE standard EN 60934 (IEC 60934)
Meets the requirements regarding fire resistance of EN 60335-1 : 2007-02 Safety of household and similar electrical appliances.

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems, office machines, electro-medical equipment, power supplies, communications systems, medical equipment to EN 60601.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	4	0.0435
0.2	24	4.5	0.0435
0.3	12	5	0.0325
0.4	5.30	6	0.0215
0.5	4.20	7	0.0165
0.6	2.90	8	0.0165
0.8	1.50	10	<0.02
1	0.9	12	<0.02
1.2	0.80	14	<0.02
1.5	0.45	15	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02
3.5	0.0565		

Illumination voltage/power consumption

operating voltage	power consumption		
	$\mathbf{Y}+\mathbf{R}$	\mathbf{G}	\mathbf{T}
6 V	2 mA	3.6 mA	4.9 mA
12 V	2 mA	3.5 mA	4.9 mA
24 V	2 mA	3.5 mA	4.9 mA
48 V	2 mA	3.5 mA	4.9 mA
115 V	$0,9 \mathrm{~mA}$	2.8 mA	2.2 mA
230 V	$0,9 \mathrm{~mA}$	2.8 mA	2.2 mA

Approvals		
Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V; DC 28 V	$0.1 \ldots 20 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 20 \mathrm{~A}$
	2-pole	
	DC 50 V	$0.1 \ldots 10 \mathrm{~A}$
1-pole		
UL, CSA	AC $250 \mathrm{~V} ;$ DC 50 V	$0.1 \ldots 20 \mathrm{~A}$
CCC	AC $250 \mathrm{~V} ;$ DC 50 V	$0.1 \ldots 2 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Ordering information

Type No.
3120 rocker switch/circuit breaker
Mounting
F snap in frame
Size of frame
panel thickness
3 to fit mounting cut-out $50.5 \times 21.5 \mathrm{~mm} 1-6.35 \mathrm{~mm}(.039-.250 \mathrm{in})$
5 to fit mounting cut-out $44.5 \times 22 \mathrm{~mm} \quad 1-4 \mathrm{~mm}(.039-.157 \mathrm{in})$
6 to fit mounting cut-out $45 \times 33.7 \mathrm{~mm} \quad 1.2-2.4 \mathrm{~mm}$ (.047-. 094 in)
Number of poles
0 2-pole, unprotected, switch only
1 1-pole, thermally protected
2 2-pole, thermally protected
5 2-pole, thermally protected on one pole only (terminals 11,12k,12i)
6 1-pole, unprotected, switch only
Mounting frame design
1 collar height 1 mm
3 collar height 9 mm
4 collar height 2 mm with water splash protection (IP54), not with -F6...
U with water splash protection and actuator guard
Terminal configuration
P7 blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC 2x.110)
(terminals 12(k), 22(k), 11, 21), not for under voltage module, not for switch
H7 12(k), 22(k): blade terminals 2x2.8-0.8 (QC 2x.110)
11, 21: terminal screws, not for switch
N7 as P7, but including shunt terminals 12(i) and 22(i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$)
not for under voltage module
G7 as H7, but including shunt terminals 12(i) and 22(i)
as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$)
Characteristic curve
T1 thermal, 1.01-1.4 $\times I_{N}$
Q1 switch only
Actuator style
U momentary switch
Switch colour designation

opaque	translucent (for illuminated versions)	
01	black	12
white		
02	white	14
red		
04	red	15
		16
orange		
	19	green blue

Rocker markings

$X=$ without marking

3120-F 3 2 1- N7 T1-W 14 A R 4-10 A ordering example
3120 - F . 0 . - N7 Q1 -W - 20 A (switch only)
N.B.

Switch only versions must be specified with -N7 or -G7 terminals. Terminals $12(\mathrm{k})$ and $22(\mathrm{k})$ are not fitted.

Typical time/current characteristics

single or double pole load

$0.1 \ldots 2$ A

2.5 ... 20 A

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4 \quad|+14|+32|+73.4|+104|+122 \mid+140$ ${ }^{\circ} \mathrm{C}$ C $\quad-30$-20 | | -10 |
| :--- | :--- |

Derating factor	0.8	0.76	0.84	0.92	1	1.08	1.16	1.24

를ㅋN Thermal Overcurrent Circuit Breaker 3120-F...

Internal connection diagrams	
2-pole, thermally protected on both poles	2-pole, thermally protected on one pole only
1-pole, thermally protected	2-pole, unprotected

Dimensions

Installation drawing

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Mounting style variants

Style F 3.3 collar height 9 mm (. 354 in.)

Style F 3.4
collar height 2 mm (. 079 in .), with water splash protection

Style F 5.1

Style F $5 . \mathbf{U}^{2}$
with water splash protection (IP54) and actuator guard

Dimension diagram for style F6 is available on request

Rear terminal shroud black (IP64)
Y 30427501

Water splash cover, transparent (IP66)
for style -F5..
X 22161901

6-way frame for 3120-F5... upon request

Cut-out dimensions

Cut-out for mounting style -F3 Cut-out for mounting style -F6 with rocker and push button with rocker

Cut-out for mounting style -F5

Edges of working parts: ISO 13715

[^8]Insulated cover
Y 30306801

Terminal adapter

Y 30386201

blade terminal DIN 46244-C-Ms-S (QC 2x.110)

Spacer for 3120-F3...
Y 303675 01/02

Spacer for 3120-F5...
Y 30367601

Blanking piece in -F3 frame
Y 30388531

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

E-T-A's proven type 3120 in a new attractive styling (S-type TO CBE to EN 60934 with trip free mechanism) offering the choice of single pole, double pole with single pole protection, and double pole with protection on both poles. Designed for snap-in panel mounting with illumination as an option. Under overload conditions the rocker returns to the OFF position
Any one of the following additional function modules can be supplied factory fitted to the rear of the switch/circuit breaker.

- Under voltage release coil (for double pole versions only).
- Magnetic trip coil for short circuit protection.
- Magnetic trip coil for remote relay trip.
- Auxiliary contacts for status signalling
- Mechanical slide interlock.

Approved to CBE standard EN 60934 (IEC 60934).
Meets the requirements regarding fire resistance of EN 60335-1: 2007-02 Safety of household and similar electrical appliances.

Available accessories: water splash protection and actuator guard to prevent inadvertent operation.

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems, office machines, electro-medical equipment, power supplies, communications systems, boating.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	4	0.0435
0.2	24	4.5	0.0435
0.3	12	5	0.0325
0.4	5.30	6	0.0215
0.5	4.20	7	0.0165
0.6	2.90	8	0.0165
0.8	1.50	10	<0.02
1	0.9	12	<0.02
1.2	0.80	14	<0.02
1.5	0.45	15	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02
3.5	0.0565		

Illumination voltage/power consumption

operating voltage	power consumption LED
6 V	4.9 mA
12 V	4.9 mA
24 V	4.9 mA
48 V	4.9 mA
115 V	2.2 mA
230 V	2.2 mA

Approvals		
Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $240 \mathrm{~V} ; \mathrm{DC} 28 \mathrm{~V}$	$0.1 \ldots 20 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 20 \mathrm{~A}$
	2-pole	
	AC 50 V	$0.1 \ldots 10 \mathrm{~A}$
1-pole		
UL, CSA	AC $250 \mathrm{~V} ;$ DC 50 V	$0.1 \ldots 20 \mathrm{~A}$
CCC		$0.1 \ldots 20 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating		AC 240 V; DC 50 V (AC 415 V to special order) (UL: AC 250 V ; DC 50 V)						
Current ratings		$0.1 \ldots 20 \mathrm{~A}$ (up to 30 A to special order, single pole only)						
Typical life		1-pole						
AC 240 V :	0.1... 20 A	30,000 operations at $1 \times I_{N}$, inductive						
DC 50 V :	0.1... 4 A	30,000 operations at $1 \times I_{N}$, inductive						
	4.5...16 A	30,000 operations at $1 \times I_{N}$, resistive						
DC 28 V :	4.5... 20 A	30,000 operations at $1 \times I_{N}$, inductive 2-pole						
AC 415 V :	0.1...16 A	10,000 operations at $1 \times I_{N}$, inductive						
AC 240 V :	0.1...16 A	50,000 operations at $1 \times I_{N}$, inductive						
	17...20 A	30,000 operations at $1 \times I_{N}$, inductive						
DC 50 V :	0.1.. 16 A	50,000 operations at $1 \times I_{N}$, inductive						
	17... 20 A	10,000 operations at $1 \times I_{N}$, inductive						
Ambient temperature		$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$						
Insulation co-ordination (IEC 60664 and 60664 A		rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area						
Dielectric strength (IEC 60664 and 60664A) operating area between poles (2-pole)		test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$						
Insulation resistance		$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$						
Interrupting capacity I_{cn}		$0.1 \ldots 2$ A $10 \times I_{N}$ 2.5... 20 A 250 A 2-pole, or 150 A 1-pole						
Interrupting capacity (UL 1077)		I_{N} U_{N} $0.1 \ldots 2 \mathrm{~A}$ AC 250 V $2.5 . \ldots 3 \mathrm{~A}$ AC 250 V $3.5 \ldots 8 \mathrm{~A}$ AC 250 V $9 \ldots . \ldots \mathrm{A}$ AC 250 V $18 \ldots . .2 \mathrm{~A}$ AC 250 V $0.1 \ldots 20 \mathrm{~A}$ DC 50 V			$\begin{aligned} & \text { 2-pole } \\ & 200 \mathrm{~A} \end{aligned}$			
		1,000						
		2,000						
		3,500						
		5,000						
		1,000						
Degree of protection (IEC 60529/DIN 40050)					operating area IP40 (IP54 with water splash protection) terminal area IP00			
Vibration					$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$			
Shock					$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$			
Corrosion					96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka			
Humidity					240 hours at $95 \% \mathrm{RH}$, to IEC 60068-2-78, test Cab			
Mass		approx. 33 g (double pole) approx. 27 g (single pole)						

Ordering information

Type No.
3120 rocker switch/circuit breaker
Mounting
F snap in frame
Size of frame
panel thickness
7 to fit mounting cut-out $44.5 \times 22 \mathrm{~mm}$ ($1.75 \times .866 \mathrm{in}$) $1-4 \mathrm{~mm}$ (.039-. 157 in) Number of poles
0 2-pole, unprotected, switch only
1 1-pole, thermally protected
2 2-pole, thermally protected
5 2-pole, thermally protected on one pole only (terminals 11,12k,12i) 6 1-pole, unprotected, switch only

Mounting frame design
N grey frame
P snap-on actuator guard grey
Q snap-on water splash cover grey
R black frame
S snap-on actuator guard black
T snap-on water splash cover black
Terminal configuration
P7 blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$) (terminals 12(k), 22(k), 11, 21), not for under voltage module, not for switch
H7 12(k), 22(k): blade terminals 2x2.8-0.8 (QC 2x.110) 11, 21: terminal screws, not for switch
N7 as P7, but including shunt terminals 12(i) and 22(i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$)
not for under voltage module
$\overline{\mathrm{G} 7}$ as H 7 , but including shunt terminals 12(i) and 22(i)
as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$)
Characteristic curve
T1 thermal, 1.01-1.4 $\times I_{N}$
Q1 switch only
Actuator style
A rocker
Switch colour designation

opaque		translucent	
20	blue	30	blue
26	sky blue	36	sky blue
	Rocker markings		

Rocker markings

Q "I" and "0" moulded in
Push button illumination (optional) T blue LED

Illumination voltage range (optional)
0 4-7V
$1 \quad 10-14 \mathrm{~V}$
$20-28 \mathrm{~V}$
$3 \quad 90-140 \mathrm{~V}$
4 185-275 V
5 42-54 V AC/DC
Current ratings
0.1... 20 A

3120-F 72 N - N7 T1 -A 30 Q T 4 - 10 A ordering example

3120 - F . 0 N - N7 Q1 -A 30 Q T 4 - 20 A (switch only)
N.B.

Switch only versions must be specified with -N7 or -G7 terminals
Terminals $12(\mathrm{k})$ and $22(\mathrm{k})$ are not fitted.

Typical time/current characteristics
single or double pole load

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.
$\left.\begin{array}{lll|l|l|l|l|l|l|l}\text { Ambient temperature }{ }^{\circ} \mathrm{F} & -22 & -4 & +14 & +32 & +73.4 & +104 & +122 & +140 \\ & { }^{\circ} \mathrm{C} & -30 & -20 & -10 & 0 & & +23 & +40 & +50\end{array}\right)+60$

EETAM Thermal Overcurrent Circuit Breaker 3120-F7..

Dimensions

Style -F7.N and F7.R

Style -F7.P and F7.S

Style -F7.Q and F7.T

Internal connection diagrams

2-pole,
thermally protected on both poles

1-pole,
thermally protected

2-pole,
unprotected
12(i) ${ }_{\text {load }}^{\text {line }}$
2-pole,
thermally protected on one pole only

Installation drawing

Panel cut-out

Terminal adapter

Y 30386201

blade terminal DIN 46244-C-Ms-S (QC 2x.110)

Spacer

Y 30367601

Rear terminal shroud black (IP64)
Y 30427501

Translucent water splash cover (IP54)
X 22214301
Consisting of

- Y 30709701 snap-on frame with actuator guard
- Y 30709601 soft plastic cover

Snap-on frame with actuator guard (can be snapped on as switch-on protection or switch-off protection)
Y 30709701

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

FETRA Thermal Overcurrent Circuit Breaker 3120-F..

Description

Switch/thermal trip free circuit breaker (S-type TO CBE to EN 60934) with standard isolator style two button operation. Single button press-to-reset version also available. Both types can be supplied in single pole configuration only, in double pole with single pole protection, and in double pole with protection on both poles. Designed for snap-in panel mounting. There is a choice of push button colour combinations and illumination is optional.
Any one of the following additional function modules can be supplied factory
fitted to the rear of the switch/circuit breaker:

- Under voltage release coil (for double pole versions only).
- Magnetic trip coil for short circuit protection.
- Magnetic trip coil for remote relay trip.
- Auxiliary contacts for status signalling
- Mechanical slide interlock

Approved to CBE standard EN 60934 (IEC 60934).
Meets the requirements regarding fire resistance of EN 60335-1: 2007-02 Safety of household and similar electrical appliances.

Typical applications

Motors, transformers, solenoids, extra low voltage wiring systems, office machines, electro-medical equipment, power supplies, communications systems, industrial controls

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	4	0.0435
0.2	24	4.5	0.0435
0.3	12	5	0.0325
0.4	5.30	6	0.0215
0.5	4.20	7	0.0165
0.6	2.90	8	0.0165
0.8	1.50	10	<0.02
1	0.9	12	<0.02
1.2	0.80	14	<0.02
1.5	0.45	15	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02
3.5	0.0565		

Illumination voltage/power consumption

operating voltage	power consumption	
	$\mathbf{Y}+\mathbf{R}$	\mathbf{G}
6 V	2 mA	3.6 mA
12 V	2 mA	3.5 mA
24 V	2 mA	3.5 mA
48 V	2 mA	3.5 mA
115 V	0.9 mA	2.8 mA
230 V	0.9 mA	2.8 mA

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $240 \mathrm{~V} ;$ DC 28 V	$0.1 \ldots 20 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 20 \mathrm{~A}$
	2-pole	
	AC 50 V	$0.1 \ldots 10 \mathrm{~A}$
1-pole		
UL, CSA	AC 50 V	$0.1 \ldots 20 \mathrm{~A}$
CCC		

Technical data

For further details please see chapter: Technical Information

Ordering information

Type No.
3120 push button switch/circuit breaker

Mounting

F snap in frame
Size of frame
2 flange mounting, special frame for fitting splash cover
3 to fit mounting cut-out $50.5 \times 21.5 \mathrm{~mm}$ ($1.99 \times 8.47 \mathrm{in}$) panel thickness $1-6.35 \mathrm{~mm}$ (.039-. 250 in)
Number of poles
0 2-pole, unprotected, switch only
1 1-pole, thermally protected
2 2-pole, thermally protected
5 2-pole, thermally protected on one pole only (terminals 11,12k,12i)
6 1-pole, unprotected, switch only
Mounting frame design
F with 2 push buttons
G with 1 push button (switch-on only)
Terminal configuration
P7 blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$) (terminals 12(k), 22(k), 11, 21), not for under voltage module, not for switch
H7 12(k), 22(k): blade terminals 2x2.8-0.8 (QC 2x.110) 11, 21: terminal screws, not for switch
N7 as P7, but including shunt terminals 12(i) and 22(i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$) not for under voltage module
G7 as H7, but including shunt terminals 12(i) and 22(i) as blade terminals $2 \times 2.8 \times 0.8 \mathrm{~mm}$ (QC $2 \times .110$)
Characteristic curve
T1 thermal, 1.01-1.4 I_{N}
Q1 switch only, only for N7 or G7 terminals
Switch style/colour
D 1 push button (re-set only)
Z 1 push button (momentary switch)

$$
\begin{array}{cl}
\hline 01 X & \text { black } \\
\hline 04 X & \text { red } \\
\hline
\end{array}
$$

12X	white translucent
19X	green translucen

S 2 push buttons on/off
GRX green translucent/red

WRX white translucent/red WBX white translucent/black Push button illumination (optional) G green LED, AC/DC Y yellow LED, AC/DC R red LED, AC/DC Illumination voltage range (optional) 0 0-4V AC/DC | | | |
| :--- | :--- | :--- |
| 1 | $10-14 \mathrm{~V}$ | $\mathrm{AC} / \mathrm{DC}$ |
| 2 | $20-28 \mathrm{~V}$ | $\mathrm{AC} / \mathrm{DC}$ |
| 3 | $90-140 \mathrm{~V}$ AC | |
| 4 | $185-275 \mathrm{VAC}$ | |
| 5 | $42-54 \mathrm{~V}$ AC/DC | |
| | Current ratings | |
| | $0.1 \ldots 2 \mathrm{~A}$ | |

N.B.

Switch only versions must be specified with -N7 or -G7 terminals.
Terminals $12(\mathrm{k})$ and $22(\mathrm{k})$ are not fitted.

Typical time/current characteristics

Internal connection diagrams

Installation drawing

Panel cut-out

Accessories

Insulated cover

Y 30306801

Terminal adapter

Y 30386201
 (QC 2x.110)

Spacer for 3120-F3...
Y 303675 01/02

Blanking piece in -F3 frame
Y 30388531

Rear terminal shroud black (IP64)
Y 30427501

Water splash cover, transparent (IP66) for style 3120-F2.F-... X 22161901
consisting of

- retaining clip Y 30655101
- cover Y 30600101

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

A module supplied factory fitted to type 3120-F to provide electrically separate changeover contacts which operate as the main contacts open/ close. Ideally suited to status signalling and sequence switching.

Typical applications

Monitoring of the switching position of the circuit breaker or any connected load.

Ordering information

Type No.

X3120 Module for type 3120 and type 3140
Function
S auxiliary contact module
Contact configuration
0 change-over contac

Approvals (complete circuit breaker/module assembly)

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 4 \mathrm{~A}$
UL, CSA	AC 250 V	$0.05 \ldots 4 \mathrm{~A}$

Dimensions

Internal connection diagram

Technical data

Voltage rating	AC 250 V ; DC 220 V
Current rating	0.1... 4 A / 0.05... 1 A
Typical life	50,000 operations
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Dielectric strength (IEC 60664 and 60664A) between main and auxiliary circuit	test voltage AC 3,000 V
Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V)
Vibration	$\begin{aligned} & 6 \mathrm{~g} \text { (type X3120-S...A) } \\ & 8 \mathrm{~g} \text { (type X3120-S...B) } \\ & (57-500 \mathrm{~Hz}), \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	15 g (11 ms), type X3120-S...A 20 g (11 ms), type X3120-S...B to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 38 g (complete assembly)

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Office: (650) 588-9200-Outside Local Area: (800) 258-9200-www.stevenengineering.com

Description

A module suitable for all double pole versions of type 3120-F to trip the main switch/circuit breaker mechanism in the event of loss of voltage. When the voltage is restored the rocker switch must be reset to reconnect the load, thereby avoiding the safety hazards associated with automatic re-starting of machinery.
Note: Basic unit 3120-...-H7 or -G7: screw terminals necessary.

Typical applications

Machines such as power tools, industrial equipment and domestic appliances where automatic restart after restoration of power could be dangerous (EC Machinery Directive).

Ordering information

Approvals (complete circuit breaker/module assembly)

Authority	Voltage ratings
VDE (EN 60934)	AC 100...240 V; DC 24 V
UL, CSA	AC $100 \ldots 240$ V; DC 24 V

Dimensions

Internal connection diagrams

X3120-U00...	X3120-U01...	X3120-U02...

Technical data	
Voltage ratings	AC 100; 120 V; 230/240 V 50/60 Hz DC 24 V
Voltage tolerance	+10\%/-15\%
Current consumption	approx. 2.5 mA
Typical life	20,000 operations
Release values	$0.2 \times U_{N}<U<0.7 \times U_{N}$ (at a rated voltage of AC 100 V the device may release at 70 V and must release at 20 V)
Release delay	$\mathrm{t}<20 \mathrm{~ms}$
Latch-in values	$\geq 85 \% \mathrm{U}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Vibration	$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6, \text { test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	48 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95% RH to IEC 60068-2-78, test Cab
Mass	approx. 53 g (complete assembly)

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

A module which adds remote trip capability to all versions of type 3120-F. A voltage applied across the coil, by means of an external sensor for example, will cause disconnection of the main switch/circuit breaker mechanism.

Typical applications

Electrical monitoring of safety systems, remote trip.

Ordering information

Type No.	
X3120	Module for type 3120
	Function
	M magnetic relay trip module
	Style
	2 magnetic remote trip coil
	Terminal design
	P7 blade terminals $2 \times 2.8 \times 0.8$ (QC $2 \times .110$) tin plated
	Supply condition
	M module mounted to the circuit breaker
	Voltage ratings
	AC 12, 24, 48, 60, 120, 220, 230, 240 V
	DC 12, 24 V

Standard voltage ratings and typical internal resistance values

Voltage rating (V)	Internal resistance per pole (Ω)	Voltage rating (\mathbf{V})	Internal resistance per pole (Ω)
$12 \mathrm{~V} \mathrm{AC/DC}$	0.78	120 V AC	71.0
$24 \mathrm{~V} \mathrm{AC/DC}$	3.3	220 V AC	312
48 V AC	11.9	230 V AC	312
60 V AC	18.5	240 V AC	312

Approvals (complete circuit breaker/module assembly)

Authority	Voltage ratings
VDE (EN 60934)	AC $12 \ldots 240 \mathrm{~V}$; DC $12 \ldots 24 \mathrm{~V}$
UL, CSA	AC $12 \ldots 240 \mathrm{~V}$; DC $12 \ldots 24 \mathrm{~V}$

Dimensions

Internal connection diagram

Technical data

Voltage ratings	AC 12... 240 V ; DC 12... 24 V
Power consumption	approx. 200 W
Pulse operation	$20 \mathrm{~ms}<\mathrm{t}_{\text {ON }}<100 \mathrm{~ms} / \mathrm{t}_{\text {OFF }}>10 \mathrm{sec}$
Release delay	$\mathrm{t}<20 \mathrm{~ms}$
Typical life	50,000 operations at U_{N}
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Dielectric strength (IEC 60664 and 60664A) between main circuit and trip coil circuit	test voltage AC 3,000 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	30 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 53 g (complete assembly)

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Suitable for use with all type 3120-F versions, this module provides a mechanical safety interlock which, according to the option specified, prevents the main switch/circuit breaker mechanism from being reset/switched on. The actuator is intended for use with interlock systems to ensure that machinery cannot be operated without covers and safety guards in place, for instance.

Typical applications

Mechanical monitoring of safety systems, e. g. for garden shredders.

Ordering information

Dimensions

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single, two and three pole rocker switch/thermal trip free circuit breakers (S-type TO CBE to EN 60934) of compact design for snap-in panel mounting. Available either with protection on one/both/all poles or, in the case of the double pole version, protection on one pole only. Illumination is optional and there is a choice of rocker colours.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, household and office machines, electrical tools, mobile homes, boating, construction vehicles, medical equipment to EN 60601.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	4	0.0435
0.2	24	5	0.0325
0.3	12	6	0.0215
0.4	5.30	7	0.0165
0.5	4.20	8	0.0165
0.8	1.50	10	<0.02
1	0.9	12	<0.02
1.2	0.80	14	<0.02
1.5	0.45	15	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02
3.5	0.0565		

Illumination voltage/power consumption

operating voltage	power consumption	
	filament/neon (B)	LED (G, R, Y)
6 V	60 mA	9 mA
12 V	20 mA	9 mA
24 V	20 mA	9 mA
48 V	20 mA	1.5 mA
115 V	$<1.5 \mathrm{~mA}$	$<1 \mathrm{~mA}^{*}$
230 V	$<1.5 \mathrm{~mA}$	$<1 \mathrm{~mA}^{*}$
415 V	$<1 \mathrm{~mA}$	not available

* single pole version only

Approvals

Authority	Voltage rating	Current rating	
VDE (EN 60934)	AC $240 / 415 \mathrm{~V}$	$0.1 \ldots 20 \mathrm{~A}$	single pole
		$0.1 \ldots 16 \mathrm{~A}$	multipole
	DC 50 V	$0.1 \ldots 8 \mathrm{~A}$	single pole
		$0.1 \ldots 16 \mathrm{~A}$	multipole
	DC 28 V	$0.1 \ldots 20 \mathrm{~A}$	single pole
UL, CSA	AC 250 V ; DC 50 V	$0.1 \ldots 16 \mathrm{~A}$	1-and 2- pole
	3 AC 250 V	$0.1 \ldots 12 \mathrm{~A}$	3-pole

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

3130
1-pole

Technical data

For further details please see chapter: Technical Information

Ordering information - 1-pole

Type No.
3130 rocker switch/circuit breaker

Mounting

F snap in frame
Frame
1 standard
3 special single pole version
Number of poles
1 single pole, thermally protected
A 1-pole, unprotected**
Frame mounting
0 panel thickness $1-2.5 \mathrm{~mm}$ (.039-. 099 in) (only 3130-F1..-...)
1 panel thickness $1.5-3.2 \mathrm{~mm}$ (.059-. 126 in)(only 3130-F3.1-...) Terminal design
P7 blade terminals DIN 46244-C-Ms-S (QC 2x.110)
H7 for terminals 1.1, 2.1 3.1 terminal screws M 3.5
for terminals 1.2, 2.2, 3.1 blade terminals (QC $2 x .110$) N7 blade terminals (QC $2 x .110$), with shunt terminal

Characteristic curve
T1 thermal, 1.05-1.4 I_{N}
Q1 switch, only with terminal design -N7 Switch style
W rocker
U momentary switch function
Switch colour designation
opaque translucent
01 black 12 white
04 red 19 green
09 green 29 black, rocker with green dot
Rocker markings
A dot (ON position, only with switch
colour designation 29)

Q "I" and "O" moulded in

Rocker illumination (optional)
. 12 Q Y white rocker, yellow LED, AC/DC

- 14 Q R red rocker, red LED, AC/DC

19 Q Y green rocker, yellow LED, AC/DC
. 29 A G black rocker with dot, green LED

- Illumination voltage range* (optional)

1	4-7 V	(G,R,Y
2	10-14 V	(G,R,Y)
3	20-28V	(G,R,Y)
4	42-54V	(R,Y)
6	90-140 V	(R,Y)
7	185-275 V	(R,Y)
X	LED, DC 8-10 mA ***	
	Current ratings	
	0.1... 20 A	

* N/A for non-illuminated version
** unprotected poles have to ordered with terminal design N7
*** without series resistor and diode, to be selected by customer.
Recommendation:
$4-7 \mathrm{~V} \quad \operatorname{Rv} 0.43 \mathrm{k} \Omega$
$10-14 \mathrm{~V}$ Rv $1.1 \mathrm{k} \Omega$
$20-28 \mathrm{~V}$ RV $2.7 \mathrm{k} \Omega$
diode 1N4007

Ordering information - multipole

Type No.

3130 rocker switch/circuit breaker multipole

Mounting
F snap in frame

F snap in

1 standard

Number of poles

2 2-pole, thermally protected
3 3-pole, thermally protected
5 2-pole, thermally protected on one pole only
6 3-pole, thermally protected on two poles only
B 2-pole, unprotected**
C 3-pole, unprotected**
Frame mounting
$0 \quad$ panel thickness $1-2.5 \mathrm{~mm}(.039-.099 \mathrm{in})$ (only 3130-F1..-...)
Terminal design
P7 blade terminals DIN 46244-C-Ms-S (QC 2x.110)
H7 for terminals 1.1, 2.1 3.1 terminal screws M 3.5;
for terminals 1.2, 2.2, 3.1 blade terminals
(QC 2x.110)
N7 blade terminals DIN 46244-C-Ms-S (QC 2x.110), with shunt terminal
Characteristic curve
T1 thermal, 1.05-1.4 I_{N}
Q1 switch, only with terminal design -N7
Switch style
W rocker
U momentary switch function
Switch colour designation

opaque	translucent
01	black

09 green

Rocker markings
Q "I" and "O" moulded in
Rocker illumination (optional)
B filament ($\leq \mathrm{AC} / \mathrm{DC} 48 \mathrm{~V}$),
neon (\geq AC 115 V)
G green LED, DC
R red LED, DC
Y yellow LED, DC
Illumination voltage range* (optional)

1	4-7V (B,G,R,Y)
2	10-14V (B,G,R,Y)
3	20-28V (B,G,R,Y
4	42-54V (B,R,Y
6	90-140 V (B)
7	185-275 V (B)
8	320-450V (B)
	Current ratings
	0.1...16 A

* N/A for non-illuminated version
** unprotected poles have to ordered with terminal design N7

룰터․ Thermal Overcurrent Circuit Breaker 3130

Dimensions

3130-F110-...

3130-F120-...

Edges of working parts: DIN 6784

Installation drawing 3130-F1...

Typical time/current characteristics

Multipole types: all poles symmetrically loaded.
With single pole overload, thermal tripping will be at approx. $1.54 \times I_{N}$ with 2-pole devices and at approx. $1.68 \times \mathrm{I}_{\mathrm{N}}$ with 3-pole devices.
0.1... 2 A

2.5 ... 20 A 1-pole
2.5 ... 16 A 2-and 3-pole

Internal connection diagrams

Accessories 3130-F130-...

Splash cover, transparent, for 3-pole version
X 22125801 (IP54), comprising bezel Y 30610901
and transparent cover Y 30610801

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Derating factor	0.8	0.76	0.84	0.92	1	1.08	1.16	1.24	

룰텅 Thermal Overcurrent Circuit Breaker 3130

Description

Single pole rocker switch/thermal trip free circuit breakers (S-type TO CBE to EN 60934) of compact design for snap-in panel mounting. Available either with protection on one/both/all poles or, in the case of the double pole version, protection on one pole only. Illumination is optional and there is a choice of rocker colours.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, household and office machines, electrical tools, mobile homes, boating, construction vehicles, medica equipment to EN 60601.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	4	0.0435
0.2	24	5	0.0325
0.3	12	6	0.0215
0.4	5.30	7	0.0165
0.5	4.20	8	0.0165
0.8	1.50	10	<0.02
1	0.9	12	<0.02
1.2	0.80	14	<0.02
1.5	0.45	15	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02
3.5	0.0565		

Illumination voltage/power consumption

operating voltage	power consumption	
	filament/neon (B)	LED (G, R, Y)
6 V	60 mA	9 mA
12 V	20 mA	9 mA
24 V	20 mA	9 mA
48 V	20 mA	1.5 mA
115 V	$<1.5 \mathrm{~mA}$	$<1 \mathrm{~mA}$
230 V	$<1.5 \mathrm{~mA}$	$<1 \mathrm{~mA}$

Approvals

Authority	Voltage rating	Current rating
VDE (EN 60934)	AC $240 / 415 \mathrm{~V}$	$0.1 \ldots 20 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 8 \mathrm{~A}$
	DC 28 V	$0.1 \ldots 20 \mathrm{~A}$
UL, CSA	AC 250 V, DC 50 V	$0.1 \ldots 16 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 50 V (UL: AC 250 V ; DC 50 V)
Current ratings	0.1... 20 A
Typical life	
AC 240 V : $0.1 \ldots 20 \mathrm{~A}$	30,000 operations at $1 \times I_{N}$, inductive
DC 50 V : $0.1 \ldots 4 \mathrm{~A}$	30,000 operations at $1 \times I_{N}$, inductive
4.5... 16 A	30,000 operations at $1 \times I_{N}$, resistive
DC 28 V : $4.5 \ldots 20 \mathrm{~A}$	30,000 operations at $1 \times I_{N}$, inductive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area current path/current path	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{array}{ll} \hline 0.1 \ldots 2 \mathrm{~A} & 10 \times \mathrm{I}_{\mathrm{N}} \\ 2.5 \ldots 20 \mathrm{~A} & 150 \mathrm{~A} \end{array}$
Interrupting capacity (UL 1077)	$0.1 \ldots 12 \mathrm{~A}$ $14 \ldots 16 \mathrm{~A}$ AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$ AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$ DC $50 \mathrm{~V} / 2,000 \mathrm{~A}$ DC $50 \mathrm{~V} / 2,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP66 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH, to IEC 60068-2-78, test Cab
Mass	approx. 17 g

Ordering information - IP66

Type No.
3130 rocker switch/circuit breaker

* N/A for non-illuminated version
** unprotected poles have to ordered with terminal design N7
*** without series resistor and diode, to be selected by customer.
Recommendation:
$4-7 \mathrm{~V} \quad$ Rv $0,43 \mathrm{k} \Omega$
$10-14 \mathrm{~V}$ Rv $1,1 \mathrm{k} \Omega$
$20-28 \mathrm{~V}$ RV $2,7 \mathrm{k} \Omega$
diode 1N4007

Dimensions 3130-F212-...

Installation drawing 3130-F212-...

Internal connection diagrams

Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Derating factor	0.8	0.76	0.84	0.92	1	1.08	1.16	1.24	

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Combination of single pole circuit breaker and ON/OFF switch with soft-touch rocker actuation. Contoured rockers are available with a choice of colours and legends, with optional illumination. The 3131 is sealed to provide IP66 rated front of panel water splash protection. It meets the requirements of circuit breaker standard EN 60934 (IEC 60934): S type, TO

Typical applications

Motor protection, transformer protection, household appliances and office equipment, electrical tools, mobile homes, watercraft, construction vehicles, medical equipment.

Current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.1	94	4	0.0435
0.2	24	5	0.0325
0.3	12	6	0.0215
0.4	5.30	7	0.0165
0.5	4.20	8	0.0165
0.8	1.50	10	<0.02
1	0.9	12	<0.02
1.2	0.80	14	<0.02
1.5	0.45	15	<0.02
2	0.27	16	<0.02
2.5	0.0785	18	<0.02
3	0.0595	20	<0.02
3.5	0.0565		

Illumination voltage / power consumption

Operating voltage	Power consumption (LED)	
	$\mathbf{Y}=$ yellow	$\mathbf{T}=$ blue
12 V	10 mA	10 mA
24 V	10 mA	10 mA
115 V	$<1 \mathrm{~mA}$	-
230 V	$<1 \mathrm{~mA}$	-

Approvals

Authority	Voltage rating	Current rating
UL 1500	Ignition Protected	
UL 1077	AC 250 V; DC 32 V	$0.1 \ldots 20 \mathrm{~A}$
VDE (EN 60934)	AC 240 V; DC 32 V	$0.05 \ldots 20 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 28 V
Current rating range	0.1... 20 A
Typical life	$0.1 \ldots 20 \mathrm{~A}$ 30,000 operations at $1 \times I_{N}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	$2.5 \mathrm{kV} / 2$ re-inforced insulation in the operating area
Dielectric strength operating area current path/current pa	test voltage AC $3,000 \mathrm{~V}$ test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{array}{ll} 0.1 \ldots 2 \mathrm{~A} & 10 \times \mathrm{I}_{\mathrm{N}} \\ 2.5 \ldots 20 \mathrm{~A} & 150 \mathrm{~A} \end{array}$
Interrupting capacity (UL 1077)	0.1... 16 A: $\begin{array}{ll}\text { AC } 240 \mathrm{~V} & 3,000 \mathrm{~A} \\ \text { DC } 32 \mathrm{~V} & 2,500 \mathrm{~A}\end{array}$
Protection class (IEC 60529)	operating area IP66 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ test to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$25 \mathrm{~g}(11 \mathrm{~ms})$ test to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, test to IEC 60068-2-11,test Ka
Humidity	240 hours at 95% RH, test to IEC 60068-2-78, test Cab
Mass	approx. 30 g

Dimensions

Installation drawing

FETRAO Thermal Circuit Breaker / Switch Series 3131

Internal connection diagrams

circuit breaker

1-pole momentary switch

switch

1-pole switch

load

1-pole momentary switch

Typical time/current characteristics

	$\begin{array}{r} +60^{\circ} \mathrm{C} \\ +140^{\circ} \mathrm{F} \end{array}$
	$\begin{array}{r} +23^{\circ} \mathrm{C} \\ +73.4^{\circ} \mathrm{F} \end{array}$
---	$-20^{\circ} \mathrm{C}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section - Technical information

Ambient temperature ${ }^{\circ} \mathrm{F}$	-4	+14	+32	+73.4	+104	+122	+140
	${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50
+60							
Derating factor	0.84	0.88	0.92	1	1.08	1.14	1.23

List of available legends

吾巨四A․ Three－position switch 3131

Description

Single pole three－position switch with latching or momentary switch functions．Featuring a soft－touch contoured rocker actuator with optional illumination．The 3131 ist sealed to provide IP66 rated front of panel water splash protection．

Typical applications

Household appliances，electrical tools，mobile homes，watercraft， construction vehicles，medical equipment

Ordering Information

Illumination voltage／power consumption

Operating voltage	Power consumption LED
12 V	10 mA
24 V	10 mA

Technical data

For further details please see chapter：Technical Information

Voltage rating	DC 32 V
Current rating	20 A
Typical life	30,000 operations at $1 \times I_{N}$ ，inductive
Ambient temperature	$-20 \ldots+60{ }^{\circ} \mathrm{C}\left(-4 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co－ordination （IEC 60664）	$2.5 \mathrm{kV} / 2$ re－inforced insulation in the operating area
Dielectric strength operating area current path／current path	test voltage AC $3,000 \mathrm{~V}$ test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	＞ $100 \mathrm{M} \Omega$（DC 500 V ）
Protection class （IEC 60529）	operating area IP66 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ test to IEC 60068－2－6，test Fc， 10 frequency cycles／axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { test to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \％salt mist， test to IEC 60068－2－11，test Ka
Humidity	240 hours at 95% RH， test to IEC 60068－2－78，test Cab
Mass	approx． 30 g

Approvals

Authority

UL 1500 Ignition Potected

Dimensions

Installation drawing

Internal connection diagrams

List of available legends

	Ordering informtion
Anchor	07
Windshield wiper	08
Bilge pump	09
Ventilation fan	12
Trim tabs	25
Mast lift	26
Further symbols upon request	

Ordering Information X3131-...

Type number
X3131 module for type 3131
Actuator style
W rocker soft-touch,
two illumination windows
Actuator colour
A blue / white translucent
B black / white translucent
C skyblue / white translucent
Rocker legends
00 without
see separate survey of legends
Rocker marking
0 without
B I and II
C 4 and (orientation 1 only)
Orientation
0 without orientation
1 orientation 1 (standard)
orientation 2
3 orientation 3
4 orientation 4
X3131-W A $07 \times 1 \quad 0 \quad 1 \quad$ ordering example

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

居튜․å Thermal Overcurrent Circuit Breaker 3140

Description

Four pole switch or three pole switch/thermal circuit breaker (S-type TO CBE to EN 60934) with trip-free mechanism and red/green two button operation. Designed for snap-in panel mounting. Integral splash water protection to meet protection degree IP 66 in the operating area (option). Optional with under voltage release module and auxiliary contact module. Complies with CBE standard EN 60934 (IEC 60934).

Typical applications

High-pressure cleaners, shredders, pumps, power saws, electric tools, motors, processing systems.

Ordering information

* only with terminal design N7 or G7

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)	Current rating (A)	Internal resistance per pole (Ω)
0.1	94	3.5	0.0595
0.2	24	4	0.0435
0.3	12	4.5	0.0325
0.4	5.30	5	0.0325
0.5	4.20	6	0.0215
0.6	2.90	7	0.0165
0.8	1.50	8	0.0125
1	0.9	10	<0.02
1.2	0.80	12	<0.02
1.5	0.45	14	<0.02
2	0.27	15	<0.02
2.5	0.0785	16	<0.02
3	0.0595		

Technical data

For further details please see chapter: Technical Information

Voltage rating	3 AC 415 V ; DC 50 V
Current rating range	0.1..16 A
Typical life	3-pole
$3 \mathrm{AC} 415 \mathrm{~V}: 0.1 . .14 \mathrm{~A}$	10,000 operations at $1 \times I_{N}$, inductive
15... 16 A	10,000 operations at $1 \times I_{N}$, resistive 4-pole
3 AC 415 V 0.1... 14 A	10,000 operations at $1 \times I_{N}$, inductive
15... 16 A	10,000 operations at $1 \times I_{N}$, resistive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution
	withstand voltage degree
	2.5 kV 2
	reinforced insulation in operating area

Dielectric strength

(IEC 60664 and 60664 A$)$	test voltage
operating area	AC $3,000 \mathrm{~V}$
between poles (3-pole)	AC $1,500 \mathrm{~V}$

Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{array}{ll} 0.1 \ldots 2 \mathrm{~A} & 10 \times \mathrm{I}_{\mathrm{N}} \\ 2.5 \ldots 16 \mathrm{~A} & 150 \mathrm{~A} \end{array}$
Interrupting capacity (UL 1077)	I_{N} U_{N} 3- and 4-pole $0.1 \ldots 16 \mathrm{~A}$ AC 250 V $5,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 (IP66 with water splash protection) terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH, to IEC 60068-2-78, test Cab
Mass	approx. 68

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC 415 V	$0.1 \ldots 16$ A $3+4$-pole
UL	AC 250 V	$0.1 \ldots 16$ A $3+4$-pole
CCC	3 AC 415 V	$0.1 \ldots 16$ A $3+4$-pole

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Dimensions

Installation drawing

Internal connection diagrams

Typical time／current characteristics

The time／current characteristic curve depends on the ambient temperature prevailing．In order to eliminate nuisance tripping，please multiply the circuit breaker current ratings by the derating factor shown below．See also section 9 －Technical information．

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Derating factor		0.8	0.76	0.84	0.92	1	1.08	1.16	1.24

雨 $\mathrm{E}^{-1} \mathrm{~A}^{\circ}$ Undervoltage Release Module X3140-U...for circuit breaker 3140

Description

A module suitable for all versions of type 3140 to trip the main switch/ circuit breaker mechanism in the event of loss of voltage of the connected phases. When the voltage is restored the switch must be reset to reconnect the load, thereby avoiding the safety hazards associated with automatic re-starting of machinery
Note: Basic unit 3140-... must be fitted with -H7 or -G7 screw terminals.

Typical applications

Machines such as power tools, industrial equipment and domestic appliances where automatic restart after restoration of power could be dangerous (EU Machinery Directive)

Ordering information

Type No.

X3140 Module for type 3140
Function
U undervoltage release module
Terminal design
00 standard (without separate connections)
01 one blade terminal 2.8×0.8 (QC .110)
02 two blade terminals 2.8×0.8 (QC .110)
03 as 01 , with flying lead $0.5 \mathrm{~mm}^{2}(I=250 \mathrm{~mm})$
and female connector 6.3x1 DIN 46247-MS
Voltage ratings
00 AC $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
03 DC 24 V
09 AC 230 / 240 V $50 / 60 \mathrm{~Hz}$
Assembly status
M module mounted to the circuit breaker
X3140-U 0000 M ordering example

Technical data

Voltage ratings	AC 400 V 50/60 Hz; AC 230 V ; DC 24 V
Voltage tolerance	+10\%/-15\%
Current consumption	approx. 2.0 mA
Release values	$0.2 \times \mathrm{U}_{\mathrm{N}}<\mathrm{U}<0.7 \times \mathrm{U}_{\mathrm{N}}$ (at a rated voltage of AC 400 V the device may release at 280 V and must release at 80 V)
Release delay	$\mathrm{t}<20 \mathrm{~ms}$
Latch-in values	$\geq 85 \% U_{N}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 20 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	48 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 90 g (complete assembly)

Approvals (complete circuit breaker/module assembly)

Authority	Voltage ratings
VDE (EN 60934)	AC 400 V; AC 230/240 V; DC 24 V

Dimensions

Internal connection diagrams

X3140-U00

X3140-U01

X3140-U02

[^9]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

A module supplied factory fitted to type 3140-F to provide electrically separate changeover contacts which operate as the main contacts open/close. Ideally suited to status signalling and sequence switching.

Typical applications

Monitoring of the switching position of the circuit breaker or any connected load.

Ordering information

Technical data	
Voltage rating	AC 250 V ; DC 220 V
Current rating	0.1... 4 A / 0.05... 1 A
Typical life	50,000 operations
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Dielectric strength (IEC 60664 and 60664A) between main and auxiliary circuit	test voltage AC $3,000 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Vibration	$\begin{aligned} & 6 \mathrm{~g} \text { (type X3120-S...A) } \\ & 8 \mathrm{~g} \text { (type X3120-S...B) } \\ & (57-500 \mathrm{~Hz}) \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	15 g (11 ms), type X3120-S...A 20 g (11 ms), type X3120-S...B to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 38 g (complete assembly)

Approvals (complete circuit breaker/module assembly)

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots 4 \mathrm{~A}$
UL, CSA	AC 250 V	$0.05 \ldots 4 \mathrm{~A}$

Dimensions

Internal connection diagram

[^10]All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

园 ETFAO Thermal Overcurrent Circuit Breaker 2-4100-

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism (R-type TO CBE to EN 60934). Options include an additional unprotected circuit tap (-A3) and -KF housing particularly suited to high humidity and other damp conditions.
Designed for threadneck panel mounting.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, hand tools, appliances.

Ordering information

Type No.

2-4100 threadneck panel mounting
(hardware bulk shipped)
Terminal design
L10 solder terminals
P10 blade terminals A6.3-0.8 mm (QC .250)
P50 blade terminals A4.8-0.8 mm (QC .190)
Shunt terminal (optional)
A3 shunt terminal (3 A max. load)
Current ratings
0.05... 10 A

2-4100 - L10 - .. - .. - 5 A ordering example
The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Currrent rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance (Ω)
0.05	322	1.8	0.34
0.08	125	2	0.29
0.1	101	2.5	0.18
0.2	25	3	0.14
0.3	11	3.5	0.1
0.4	6.3	4	0.08
0.5	4.1	4.5	0.069
0.6	2.8	5	0.053
0.7	2.1	6	<0.05
0.8	1.6	7	<0.05
1	0.97	8	<0.05
1.2	0.66	10	<0.05
1.5	0.4		

Approvals

Authority	Voltage rating	Current rating
VDE (EN 60934)	AC $250 \mathrm{~V} ;$ DC 28 V	$0.05 \ldots 10 \mathrm{~A}$
CSA	AC 250 V	$0.05 \ldots 3.5 \mathrm{~A}$
UL	AC 250 V	$0.05 \ldots 5 \mathrm{~A}$
-A3 versions are not UL approved		

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V ; DC 28 V
Current rating range	0.05... 10 A
Typical life AC 250 V / DC 28 V: DC $28 \mathrm{~V}: \quad 0.05 \ldots 10 \mathrm{~A}$	2,000 operations at $2 \times I_{N}$, resistive 1,000 operations at $2 \times I_{N}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664 A) operating area	test voltage AC 3,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.05 \ldots 2 \mathrm{~A}$ $10 \times \mathrm{I}_{\mathrm{N}}$ $2.5 \ldots 6 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $7 \ldots 10 \mathrm{~A}$ $6 \times \mathrm{I}_{\mathrm{N}}$
Interrupting capacity (UL 1077)	I_{N} U_{N} $0.05 \ldots 4.5 \mathrm{~A}$ AC 250 V 200 A 5 A AC 250 V $1,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 15 g

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Dimensions

Installation drawing

[^11]
Internal connection diagram

Typical time/current characteristics at $+23{ }^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Accessories

Water splash cover, transparent Y 30053801 , bonded to knurled nut Y 30062801
X 20079901 (IP64)

Hex nut with splash cover black X 21073901 (IP64)

Water splash cover transparent with hex nut X 20129603 (IP64)

Water splash cover, transparent bonded to special knurled nut
X 20079802 (IP64)

麇ETAOMigh Performance Thermal Circuit Breaker 4130

Description

Single pole high performance thermal circuit breaker, with push-toreset tease free, trip-free snap action mechanism (R-type TO CBE to EN 60934). Designed for threadneck panel mounting and for applications with a high fault current switching requirement
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, battery chargers, power supplies, appliances, machinery, extra low voltage systems.

Ordering information

Type No.
4130

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
20	<0.02	40	<0.01
25	<0.02	50	<0.01
30	<0.02	60	<0.01
35	<0.02	70	<0.01

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $240 \mathrm{~V} ;$ DC 50 V	$20 \ldots 70 \mathrm{~A}$
UL	AC $240 \mathrm{~V} ;$ AC $120 \mathrm{~V} ;$	
	DC 50 V	$20 \ldots 80 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V ; DC 50 V
Current rating range	20... 70 A
Typical life	
AC 240 V : $20 . .70 \mathrm{~A}$	100 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
	500 operations at $2 \times I_{N}$, resistive
DC 50 V : $20 . .80 \mathrm{~A}$	500 operations at $2 \times \mathrm{I}_{\mathrm{N}}$, inductive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 (reinforced insulation in the mounting area)
Dielectric strength operating area	test voltage AC $3,000 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	800 A
Interrupting capacity (UL 1077)	
	I_{N} $20 \ldots 70 \mathrm{~A}$ AC 240 V $1,000 \mathrm{~A}$
	20..60 A AC 120 V 3,500 A
	70 A AC 120 V 2,000 A
	20..50 A DC 50 V 3,500 A
	60..70 A DC 50 V 2,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IPOO
Vibration	$\begin{aligned} & 8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6, \text { test } \mathrm{Fc} \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95% RH to IEC 60068-2-78, test Cab
Mass	approx. 55 g

Dimensions

Intstallation drawing

Internal connection diagram

Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4|+14|+32|+73.4|+104|+122 \mid+140$ | | ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +23 | +40 | +50 | +60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Derating factor | | 0.68 | 0.76 | 0.84 | 0.92 | 1 | 1.08 | 1.16 | 1.24 |

Accessories

Separate hardware
Hex nut Y 30011602

Water splash cover, transparent with knurled nut and O ring (IP64) X 21066301

Knurled nut
Y 30206501

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single pole thermal circuit breaker with press-to-reset, tease-free, tripfree, snap action mechanism. Type 2-5000 is available with optional manual release (-H), type 2-5700 can be supplied as a push-push switch/circuit breaker (R-type TO CBE to EN 60934 in press-to-reset configuration; M-type when fitted with manual release -H; S-type with push-push operation). Fitted with flange or threadneck for panel mounting. Options include an additional unprotected circuit tap (-A3). Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, battery chargers, power supplies, appliances, machinery, extra low voltage systems.

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values			
Current rating (A) Internal resistance (Ω) Current rating (A) Internal resistance (Ω) 0.05 280 3 0.1 0.08 100 3.5 0.06 0.1 110 4 0.06 0.2 29 4.5 0.05 0.3 14 5 0.05 0.4 7 6 0.02 0.5 4.9 7 0.02 0.6 3.4 8 0.02 0.7 2.5 10 <0.02 0.8 1.8 12 <0.02 1 1.2 13 <0.02 1.2 0.8 15 <0.02 1.5 0.6 16 <0.02 1.8 0.4 20 <0.02 2 0.3 22 <0.02 2.5 0.2 25 <0.02			

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V ; DC 28 V (UL: AC 250 V ; DC 50 V)
Current rating range	0.05... 25 A
Typical life $0.05 \ldots 16 \mathrm{~A}$ $17 \ldots 25 \mathrm{~A}$	AC $250 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V}$: 5,000 operations at $2 \times I_{N}$, inductive 5,000 operations at $2 \times I_{N}$, resistive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC 3,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.05 \ldots 2.5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots . .5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots 12 \mathrm{~A}$ 200 A (higher interrupting capacity available to special order) $13 . . .25 \mathrm{~A}$ 400 A
Interrupting capacity (UL 1077)	I_{N} U_{N} $0.05 \ldots 20 \mathrm{~A}$ AC 250 V $2,000 \mathrm{~A}$ $0.05 \ldots 25 \mathrm{~A}$ DC 50 V $2,000 \mathrm{~A}$ (higher values upon request)
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 29 g

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots 25 \mathrm{~A}$
CSA/ UL	AC 250 V ; DC 50 V	$0.05 \ldots 20 \mathrm{~A}$
CCC	AC 250 V	$0.05 \ldots 25 \mathrm{~A}$
SEV	AC 250 V ; DC 28 V	$0,05 \ldots 25 \mathrm{~A}$

Dimensions

2-5000-P10

2-5700-P10

Terminal design

Installation drawings

Internal connection diagrams

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Accessories for types 2-5000 and 2-5700 with screw terminals -K10

Accessories for type 2-5000-...

Water splash cover, transparent for push button (IP64)

 Y 30072801

Fixing plate Y 30105602

Rear terminal shroud, transparent (IP64)
Y 30047601

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Accessories for type 2-5700-...

With 3/8" threadneck (-iG1)
Water splash cover, transparent Y 30053801 and knurled nut Y 30062801
X 20079901 (IP64)

Water splash cover
transparent with
special knurled nut
X 20079802 (IP64)

Separate hardware

Hex nut

Y 30019201

With M12 threadneck (-iG2)
Hex nut with splash cover, black
X 20129601 without O ring (IP64)
X 20080103 with O ring
(IP66 and IP67)
Hex nut with splash cover,
transparent
X 20080108 with O ring

Hex nut
Y 30011602

Hex nut with splash cover black without O ring X 21073901 (IP64) transparent splash cover X 20129603 (IP64)

Knurled nut
Y 30711702

Water splash cover transparent with knurled nut and O ring X 21066301 (IP64)
(IP66 and IP67)

Knurled nut
Y 30206501

Description

Single pole thermal circuit breaker with push-to-reset, tease-free, tripfree, snap action mechanism (R-type TO CBE to EN 60934; M-type when fitted with optional manual release feature). Designed for plugin mounting with E-T-A sockets 10 and 16.

Typical applications

Extra low voltage wiring systems and components.

Ordering information

Type No

2-5200 plug-in
Manual release (optional)
H manual release facility
Current ratings
0.05... 16 A 1

2-5200-H - .. - 5 A ordering example

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	280	2.5	0.2
0.08	100	3	0.1
0.1	110	3,5	0.065
0.2	29	4	0.065
0.3	14	4.5	0.05
0.4	7	5	0.05
0.5	4.9	6	0.02
0.6	3.4	7	0.02
0.7	2.5	8	< 0.02
0.8	1.8	10	< 0.02
1	1.2	12	< 0.02
1.2	0.84	13	< 0.02
1.5	0.6	15	< 0.02
1.8	0.4	16	< 0.02
2	0.25		

Approvals

Authority	Voltage ratings	Current ratings
UL	AC $250 \mathrm{~V} ;$ DC 50 V	$0.05 \ldots 20 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	$\begin{aligned} & \text { DC } 28 \mathrm{~V} \\ & \text { (UL: AC 250; DC } 50 \mathrm{~V} \text {) } \end{aligned}$
Current rating range	0.05...16 A (up to 25 A to special order)
Typical life $0.05 . .16 \mathrm{~A}$	AC $250 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V}$: 5,000 operations at $2 \times I_{N}$, inductive
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.05 \ldots . .2 .5 \mathrm{~A}$ $8 \times \mathrm{I}_{\mathrm{N}}$ $3 \ldots .5 \mathrm{~A}$ $20 \times \mathrm{I}_{\mathrm{N}}$ $6 \ldots . .16 \mathrm{~A}(25 \mathrm{~A})$ 400 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$8 \mathrm{~g}(57 \text { to } 500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm},(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc,
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 35 g

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-4	+14	+32	+73.4	+104	+122	+140
	${ }^{\circ} \mathrm{C}$	-20	-10	0	+23	+40	+50

Accessories

Blanking plug
Y 30147701
for sockets 10R-P10/K10

Connector bus links -P10
X 210588 01/
$1.5 \mathrm{~mm}^{2}$ (AWG 16) (brown)
X 210588 02/
$2.5 \mathrm{~mm}^{2}$ (AWG 14) (black)
X 210588 03/
$2.5 \mathrm{~mm}^{2}$ (AWG 14) (red)
X 210588 04/
$2.5 \mathrm{~mm}^{2}$ (AWG 14) (blue)
Terminal for mounting rack X 20080001
for sockets 10R, 10F on
EN rail 50 035-G32

Connector bus links -K10
X 210589 01/
$2.5 \mathrm{~mm}^{2}$ (AWG 14) (black)
X 21058902
$1.5 \mathrm{~mm}^{2}$ (AWG 16) (brown)

$1.5 \mathrm{~mm}^{2}$ - up to 13 A max. load
$2.5 \mathrm{~mm}^{2}$ - up to 20 A max. load

Description

Single pole thermal circuit breakers with push-to-reset, tease-free, tripfree, snap action mechanism (R type TO CBE to EN 60934; M-type when fitted with manual release features/type 2-6200 only).
Featuring auxiliary contacts ($1 \times \mathrm{N} / \mathrm{C}$; $1 \times \mathrm{N} / \mathrm{O}$) as standard. Options include manual release (type 2-6200 only), an additional unprotected circuit tap (-A3) and a centre reset position in which all contacts are open (-ZR: type 2-6200-H only).
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Motors, transformers, solenoids, controls for oil and gas boilers.

Ordering information

Type No.

2-6200 flange mounting, with auxiliary contacts
2-6400 threadneck panel mounting, with auxiliary contacts
mounting hardware bulk shipped

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance ($\Omega)$	Current rating (A)	Internal resistance (Ω)
0.05	257	2	0.30
0.08	138	2.5	0.20
0.1	90	3	0.12
0.2	32.2	3,5	0.10
0.3	14.6	4	0.07
0.4	8.4	4.5	0.056
0.5	5.15	5	0.046
0.6	3.82	6	0.035
0.7	2.80	7	0.03
0.8	2.15	8	<0.02
1	1.42	10	<0.02
1.2	0.96	12	<0.02
1.5	0.51	15	<0.02
1.8	0.40	16	<0.02

Technical data

For further details please see chapter: Technical Information

Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 40 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 25 g

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 250 V; DC 28 V	$0.05 \ldots 16 \mathrm{~A}$
CSA/ UL	AC 250 V; DC 28 V	$0.05 \ldots 16 \mathrm{~A}$

Internal connection diagrams

$$
0.05 \text {... } 7 \text { A }
$$

(-A3)

8 ... 16 A

2-6200-...-ZR

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Dimensions

2-6200-...

2-6400-...
iG1=3/8-27UNS-2A tightening torque max. 1 Nm

blade terminal

(QC .250)

Installation drawings

2-6400-...

Terminal design

-P10 0.05... 7 A

See dimension diagram.
-P10 8... 16 A

-P10-A3 0.05... 16 A

-L10 0.05... 7 A

-L10 8... 16 A

-L10-A3 0.05... 16 A

Accessories for type 2－6400－．．．

With 3／8＂threadneck（－iG1）

Water splash cover，transparent Y 30053801 and knurled nut Y 30062801 X 20079901 （IP64）

Water splash cover，
transparent with
special knurled nut
X 20079802 （IP64）

Hex nut with splash cover black without O ring X 21073901 （IP64） transparent splash cover X 20129603 （IP64）

Knurled nut
Y 30711702

With M12 threadneck（－iG2）
Hex nut with splash cover，black X 20129601 without O ring（IP64）
X 20080103 with O ring
（IP66 and IP67）
Hex nut with splash cover，
transparent
X 20080108 with O ring
（IP66 and IP67）

Hex nut
Y 30011602

Knurled nut Y 30206501

This is a metric design and millimeter dimensions take precedence（ $\left.\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only．In the interest of improved design， performance and cost effectiveness the right to make changes in these specifications without notice is reserved．Product markings may not be exactly as the ordering codes． Errors and omissions excepted．

屋 E TFA Motor Protection Control 2-6500-

Description

Bimetal operated single pole motor protection control with automatic reset actuation, small physical size, reliable snap-action mechanism.

Caution: In specifying this product, care should be taken to ensure that automatic motor re-start does not represent a safety hazard.

Typical applications

Motors, transformers, extra low voltage wiring.

Ordering information

Type No.	
2-6500 surface type with flange	
	Terminal design
	P10 blade terminals 6.3-0.8 (QC .250)
	Shunt terminal (optional)
	A3 blade terminals or solder terminals; max. load 5 A
	Current ratings
	0.1...10 A
2-6500	P10-... - 6 A ordering example

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

```
Standard current ratings and typical internal resistance values
```

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.1	140	2	0.47
0.2	47.5	2.5	0.33
0.3	20.5	3	0.212
0.4	11.4	3.5	0.155
0.5	7.25	4	0.107
0.6	5.35	4.5	0.095
0.7	3.8	5	0.072
0.8	2.95	6	0.054
1	1.92	7	0.032
1.2	1.32	8	0.02
1.5	0.85	9	<0.02
1.8	0.59	10	<0.02

Approvals

Authority	Voltage rating	Current rating
UL	AC 250 V; DC 28 V	$0.1 \ldots 10 \mathrm{~A}$

Technical data

Voltage rating	AC 250 V ($50 / 60 \mathrm{~Hz}$); DC 28 V
Current ratings	0.1...10 A (up to 15 A upon request)
Typical life	100,000 operations at $2 \times I_{N}$ Protection is ensured for 18 days of continuous locked rotor condition with $\mathrm{I}_{\mathrm{k}} \leq 6 \times \mathrm{I}_{\mathrm{N}}$, max. 30 A (unsupervised duty)
Ambient temperature	$-10 \ldots+60^{\circ} \mathrm{C}\left(-10 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 3
Dielectric strength (IEC 60664 and 60664A)	test voltage AC 2,000 V
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity	$8 \times \mathrm{I}_{\mathrm{N}}$ (co-co-co)
Reset time at $23{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \geq 30 \mathrm{sec} \\ & \leq 70 \mathrm{sec} \end{aligned}$
Degree of protection (IEC 60529/DIN 40050)	housing IP30 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 15 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { test to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	48 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 20 g

E-FAO Motor Protection Control 2-6500-

Dimensions

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

[^12]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

屏ETA゚ Thermal-Magnetic Circuit Breaker 201/-WA

Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Featuring a narrow profile housing, recessed terminals, standard EN rail mounting, and precision CBE performance.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Process control systems, instrumentation, rail vehicles.

Ordering information

Type No.	
201	single pole, rail mounted version
201-WA low-resistance version	
	Option
	2705 fitted with adapter X 20040901
	Current ratings
	0.05...16 A (type 201)
	0.05...10 A (type 201-WA)
201-..-... - 10 A ordering example	

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

| $\begin{array}{l}\text { Current } \\ \text { rating (A) }\end{array}$ | $\begin{array}{l}\text { Internal } \\ \text { 201 }\end{array}$ | | 201-WA |
| :--- | :--- | :--- | :--- | :--- | :--- |$)$

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60 934)	AC 240 V; DC 65 V	$0.05 \ldots 16 \mathrm{~A}$
CSA, UL	AC 250 V ; DC 80 V	$0.05 \ldots .16 \mathrm{~A}$
UL	DC 65 V	$0.05 \ldots 25 \mathrm{~A}$

Internal connection diagram

Installation drawing

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Derating factor		0.76	0.79	0.83	0.88	1	1.08	1.16	1.24

Typical time/current characteristics

${ }^{1}{ }^{1}$ Magnetic tripping currents are increased by 20% on DC supplies.
${ }^{2)}$ Magnetic tripping currents are decreased by 20% on AC supplies.

屏ETA゚ Thermal-Magnetic Circuit Breaker 201/-WA

Accessories

Busbar 1-pole, 90°

X 22254001
The one metre long busbars can be cut to suitable lengths. Plug-on caps can be fitted on the ends to provide brush contact protection.
$I_{\text {max }}$ - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$

Plug-on cap, 1-pole

Supply terminal $I_{\max } 63$ A
Y 30855101
Max. tightening torque of terminal screw 2 Nm Max. cable cross section: $\quad 25 \mathrm{~mm}^{2}$ / single strand $16 \mathrm{~mm}^{2}$ / multistrand with wire end ferrule

Adapter for EN rail 50035-G32 specified as a separate item X 20040901

Connector bus links -K10
X 210589 01/2.5 mm², (AWG 14) (black) up to 20 A max. load X 210589 02/1.5 mm², (AWG 16) (brown) up to 13 A max. load

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

One, two and three pole thermal-magnetic circuit breakers with tripfree mechanism and toggle actuation (S-type TM CBE to EN 60934/IEC 934). Designed for panel or plug-in mounting. Available with auxiliary contacts ($1 \times \mathrm{N} / \mathrm{O}, 1 \times \mathrm{N} / \mathrm{C}$) for status signalling. Two and three pole models are internally linked to ensure that both/all poles trip in the event of an overload on one pole, even if the actuator is held in the ON position. A choice of characteristic curves further extends the range of applications possibilities for these CBEs. Special auxiliary contact versions for industrial atmosphere and low voltages (e.g. 5 V) available on request.
Approved to CBE standard EN 60934 (IEC 60934).
Suitable for use in distribution rails - see section 7.

Typical applications

Process control equipment, robotics, machine tool control, communications systems, instrumentation, rail vehicles. Special versions, e.g. for aggressive environmental conditions and low voltages (e.g. 5 V) on request.

Ordering information

Type No.
2210 single or multipole thermal-magnetic circuit breaker
Mounting
S socket or panel mounting
Actuator design
2 toggle
Number of poles
1 1-pole protected
2 2-pole protected
3 3-pole protected
5 2-pole, protected on one pole only
Panel mounting
0 without hardware
1 with M3 thread
2 with $6 / 32$ thread
Terminal design (main contacts)
P1 blade terminals 6.3-0.8 (QC .250)
Characteristic curve
F1 fast acting: therm.1.01-1.4x| ${ }_{N}$;magn.2-4x| ${ }_{N}$ DC (DC only)
F2 fast acting: therm.1.01-1.4×I ;
magn. $3.5-6.5 \mathrm{xI}_{N} \mathrm{AC} / 4.5-8.5 \mathrm{xI}_{N} \mathrm{DC}$
M1 standard delay: therm. 1.01-1.4x ${ }_{N}$;
magn. 6-12xI $A C ; 7.8-15.6 \mathrm{xI}_{N} \mathrm{DC}$
T1 delayed: therm. 1.01-1.4xI ${ }_{N}$; magn. $10-20 \mathrm{xI}_{\mathrm{N}} \mathrm{AC}$
T2 thermal only, 1.01-1.4x ${ }_{N}$
M3 standard delay, low resistance: therm.1.4-1.8xI ${ }_{N}$;
magn. $6-12 \mathrm{xl}_{\mathrm{N}} \mathrm{AC} ; 7.8-15.6 \mathrm{xI}_{N} \mathrm{DC}$
Intermediate position
H without intermediate position (standard)
Z with intermediate position
Auxiliary contacts
0 without auxiliary contacts
1 with auxiliary contacts in all poles
2 with auxiliary contacts in pole 1
(only multipole devices)
3 with auxiliary contacts in poles 1 and 3
(≥ 3-pole devices)
Auxiliary contact function (see diagram)
1 one each N/C and N/O (standard)
2 one N/O contact (23/24)
3 one N/C contact (11/12)
Auxiliary contact - terminal design
1 same as main terminals
Current ratings
$0.1 . . .25 \mathrm{~A}$
2210-S 210 - P1 F1-H 1 1 1-10 A ordering example

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V*; 3 AC 433 V ($50-60 \mathrm{~Hz}$); DC 65 V (*UL: AC 277 V ; DC 65 V)			
Current rating range	0.1... 25 A for curves M1, T1, T2 0.1... 16 A for curves F1, F2, M3			
Auxiliary circuit	1 A, AC 240 V/DC 65 V			
Typical life	10,000 operations at $1 \times I_{N}$, inductive			
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right) \mathrm{T} 60$			
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area			
Dielectric strength (IEC 60664 and 60664A) operating area main/aux. circuit aux. circuit 11-12/23-24 pole/pole	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC $1,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$			
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$			
Interrupting capacity I_{cn} curves F1, F2, M1, T1: curve T2 : curve M3:	$0.1 \ldots 5 \mathrm{~A}$ 400 A $6 \ldots 25 \mathrm{~A}$ 800 A $0.1 \ldots 16 \mathrm{~A}$ $2,500 \mathrm{~A}$ (at DC 32 V) $0.1 \ldots 25 \mathrm{~A}$ $15 \times \mathrm{I}_{\mathrm{N}}$ $0.1 \ldots 2 \mathrm{~A} \mathrm{AC}$ $200 \mathrm{~A} / \mathrm{DC} 400 \mathrm{~A}$			
Interrupting capacity (UL 1077)	$\begin{aligned} & 0.1 \ldots 8 \mathrm{~A} \\ & \text { AC } 250 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 10... } 16 \text { A } \\ & \text { AC } 125 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \ldots . .25 \mathrm{~A} \\ & \text { AC } 250 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \ldots 25 \mathrm{~A} \\ & \mathrm{DC} 65 \mathrm{~V} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 1-pole } \\ & \text { 2-pole } \\ & \text { 3-pole } \end{aligned}$	$\begin{aligned} & 1,000 \mathrm{~A} \\ & 2,000 \mathrm{~A} \\ & 3 \mathrm{AC} \mathrm{250V} \\ & 2,000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2,000 \mathrm{~A} \\ & 2,000 \mathrm{~A} \\ & 3 \mathrm{AC} \mathrm{250V} \\ & 2,000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3,500 \mathrm{~A} \\ & 3,500 \mathrm{~A} \\ & 3 \mathrm{AC} 216 \mathrm{~V} \\ & 3,500 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 2,000 \mathrm{~A} \\ & 2,000 \mathrm{~A} \end{aligned}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 terminal area IP00			
Vibration curve F1: curves M1, M3, T1, T2:	$\begin{aligned} & 3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6, \text { test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$			
Shock curve F1: curves M1, M3, T1, T2:	25 g (11 ms), directions 1, 2, 3, 4, 5 $10 \mathrm{~g}(11 \mathrm{~ms})$, direction 6 25 g (11 ms), directions 1, 2, 3, 4, 5 $20 \mathrm{~g}(11 \mathrm{~ms})$, direction 6 to IEC 60068-2-27, test Ea			
Corrosion	96 hours in 5% salt mist to IEC 60068-2-11, test Ka			
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab			
Mass	approx. 50 g per pole			

Remote trip coil available to special order.

Current rating (A)	Internal res F1 fast acting for DC only	sistance (Ω) F2 fast acting delay for AC + DC	M1 standard for AC + DC		M3 standard delay for $A C+D C$	T2 thermal for $A C+D C$
0.1	162	162	92	81	42	77
0.2	39.3	39.3	26.1	24.2	11.7	23
0.3	17.5	17.5	11.6	10.4	5.6	10.2
0.4	9.2	9.2	6,6	6.0	2.9	5.7
0.5	6.8	6.8	4,1	3.9	1.75	3.7
0.6	4.2	4.2	3	2.7	1.42	2.6
0.8	2.8	2.8	1.65	1.53	0.75	1.39
1	1.6	1.6	1,10	0.98	0.5	0.9
1.5	0.78	0.78	0.47	0.42	0.22	0.36
2	0.42	0.42	0.28	0.24	0.136	0.19
2.5	0.26	0,26	0.183	0.17	0.083	0.141
3	0.18	0.18	0.124	0.12	0.057	0.091
4	0.12	0.12	0.077	0.073	0.041	0.051
5	0.092	0.092	0.063	0.055	0.032	0.040
6	0.054	0.054	0.045	0.039	0.021	0.027
8	0.025	0.025	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
10	0.022	0.02	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
12	≤ 0.02					
16	≤ 0.02					
20	-	-	≤ 0.02	≤ 0.02	-	≤ 0.02
25	-	-	≤ 0.02	≤ 0.02	-	≤ 0.02

Approvals

Authority	Voltage ratings	Current ratings
GL, VDE (EN 60934)	AC $250 \mathrm{~V} ; \mathrm{DC} 65 \mathrm{~V} ;$	
	3 AC 433 V	$0.1 \ldots 25 \mathrm{~A}$
UL, CSA	AC $277 \mathrm{~V} ; \mathrm{DC} 65 \mathrm{~V} ;$	
	AC 277/480 V	$0.1 \ldots 25 \mathrm{~A}$

Toggle positions

Shock directions

Dimensions

Installation drawing

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\text { inch }}\right.$)

Internal connection diagrams

with auxiliary contact function 1 (one each N/O and N/C)
(...-H111-...) without intermediate position
(...-Z111-...) with intermediate position

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4 \quad|+14|+32 \quad+73.4|+86|+104|+122 \mid+140$ | ${ }^{\circ} \mathrm{F}$ | -22 | -4 | +14 | +32 | +73.4 | +86 | +104 | +122 | +140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +23 | +30 | +40 | +50 | +60 |
| 0.76 | 0.79 | 0.83 | 0.88 | 1 | 1.04 | 1.11 | 1.19 | 1.29 | |

Multipole devices: all poles symmetrically loaded. With single pole overload thermal tripping will be at max. $1.7 \times \mathrm{I}_{\mathrm{N}}$ with curves $\mathrm{F} 1, \mathrm{~F} 2, \mathrm{M} 1$ and T2, and at max. $2.2 \times \mathrm{I}_{\mathrm{N}}$ with curve M3

Typical time/current characteristics

${ }^{11}$ Magnetic tripping currents are increased by 30\% on DC supplies

Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information

Ambient temperature ${ }^{\circ} \mathrm{F}-22|-4|+14|+32|+73.4|+86|+104|+122|+140$ | ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +23 | +30 | +40 | +50 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +6.76 | | | | | | | | |
| 0.76 | 0.79 | 0.83 | 0.88 | 1 | 1.04 | 1.11 | 1.19 | 1.29 |

Multi pole devices: all poles symmetrically loaded. With single pole overload, thermal tripping will be at max. $1.7 \times \mathrm{I}_{\mathrm{N}}$ with curves $\mathrm{F} 1, \mathrm{~F} 2, \mathrm{M} 1$ and T 2 , and at max. $2.2 \times \mathrm{I}_{\mathrm{N}}$ with curve M3.
${ }^{1)}$ Magnetic tripping currents are increased by 30\% on DC supplies (curves M1, M3, T1)

-M3 $0.1 \ldots 5$ A AC/DC ${ }^{11}$

DC

Accessories

Bus bar 50 A, 6-way, for type 63-P10-Si socket X 22176011

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Bus bar 50 A (6-way) for type 17-P10-Si socket
X 22176001

Bus bar (10-way) (supplied as a complete package)
for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for bus bar (10-way) Y 30382401

Accessories

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$, (AWG 16), brown (up to 13 A max. load)
X 210588 02/2.5 mm², (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), blue (up to 20 A max. load)

Toggle guard for 1-pole units, black X 22161701

For front panel mounting.

Splash cover (transparent)
with fixing plate and screws (IP54)
for type 2210-S211-... (1-pole)
X 21111702

mounting dimensions: M3 - hole dia. $3.5 \mathrm{~mm} / .138 \mathrm{in}$.

Splash cover (transparent)
with fixing plate and screws (IP54)
for type 2210-S221-... (2-pole) and
type 2210-S231-... (3-pole)
X 21111801

fixing plate

mounting hole

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single pole thermal-magnetic circuit breaker with trip-free mechanism and toggle actuation. Two-chamber construction with cascade contact arrangement to provide high voltage DC capability and high switching performance.
Designed for plug-in mounting in distribution rail X2210-S0606J (see section 7) or terminal blocks 23-P10-Si-202005 and 63-P10-Si-202005 Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Communications systems, power supplies, process control equipment.

Ordering information

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)
1	1.10
2	0.25
3	0.13
4	0.07
6	0.04
8	0.02
10	0.02
16	<0.02
25^{*}	<0.02
${ }^{*} 80 \% \mathrm{I}_{\mathrm{N}}$ continuous load	

Approvals

Authority	Voltage ratings	Current ratings
GL, VDE (EN 60934)	AC 250 V; DC 65 V	$1 \ldots 25 \mathrm{~A}$

Dimensions

Installation drawing

Internal connection diagrams

Shock directions

Typical time/current characteristics

See page 2-21.

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

투튜․ Thermal-Magnetic Circuit Breaker 2210-S291-P9M2-410005-...A

Description

Single pole thermal-magnetic circuit breaker with trip-free mechanism and toggle actuation. Two-chamber construction with cascade contact arrangement to provide high voltage DC capability and high switching performance.
Designed for plug-in mounting in distribution rail X2210-S0606J (see section 7) or terminal blocks 23-P10-Si-202005 and 63-P10-Si-202005. Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Communications systems, power supplies, process control equipment.

Ordering information

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.4	6.87	6	0.09
0.65	2.96	8	0.03
1	1.84	10	0.03
1.6	0.75	12	0.02
2	0.50	16	<0.02
2.5	0.35	20^{*}	<0.02
3	0.25	25^{*}	<0.02
4	0.15	${ }^{*} 80 \% I_{N}$ continuous load	

Approvals

Authority	Voltage ratings	Current ratings
GL, VDE (EN 60934)	AC 250 V; DC 65 V	$0.4 \ldots 25 \mathrm{~A}$

Dimensions

Installation drawing

Internal connection diagrams

Shock directions

Selective back-up fuses

Voltage rating	Interrupting capacity	Selective to	
		NH fuse rating	Current rating of 2210-S291-P2M2-410005
60 V DC	3,500 A	35 A	$\leq 6 \mathrm{~A}$
		50 A	$\leq 12 \mathrm{~A}$
		63 A	$\leq 20 \mathrm{~A}$
		80 A	$\leq 25 \mathrm{~A}$
		100 A	$\leq 25 \mathrm{~A}$
250 V AC	2,000 A	35 A	$\leq 3 \mathrm{~A}$
		50 A	$\leq 8 \mathrm{~A}$
		63 A	$\leq 20 \mathrm{~A}$
		80 A	$\leq 25 \mathrm{~A}$
		100 A	$\leq 25 \mathrm{~A}$
NH fuse according to VDE 0636, part 21 (IEC 269)			
NH fuse = low voltage power fuse			

Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+86	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+30	+40	+50	+60
Derating factor	0.76	0.79	0.83	0.88	1	1.04	1.11	1.19	1.29	

\qquad

Description

One, two and three pole thermal-magnetic circuit breakers with trip-free mechanism and toggle actuation (S-type TM CBE to EN 60934/IEC 934). Featuring a combi-foot design for both symmetric and asymmetric rail mounting. Available with auxiliary contact ($1 \times \mathrm{N} / \mathrm{O}$ or $1 \times \mathrm{N} / \mathrm{C}$) for status signalling. Two and three pole models are internally linked to ensure that both/all poles trip in the event of an overload on one pole, even if the actuator is held in the ON position. This CBE can be supplied in current ratings up to 32 A with a choice of characteristic curves. All screw terminals are recessed for safety. Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Process control equipment, robotics, machine tool control, communications systems, instrumentation.

Ordering information

Approvals

Authority	Voltage ratings	Current ratings
GL, VDE (EN 60934)	3 AC $433 \mathrm{~V} ;$ AC 250 V ; DC 65 V	$0.1 \ldots 32 \mathrm{~A}$
UL, CSA	3 AC 480 V ; AC 277 V ;	
	AC $277 / 480 \mathrm{~V}$; DC 65 V	$0.1 \ldots 32 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 250 V; 3 AC 433 V ($50 / 60 \mathrm{~Hz}$); DC 65 V (UL: AC 277/480 V; DC 65 V)
Current rating range	0.1... 32 A for curves M1, T1, T2 0.1... 16 A for curves F1, F2, M3
Auxiliary circuit	1 A, AC $240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
Typical life 3 AC 433 V ; AC 250 V : DC 65 V : 3 AC 433 V ; AC 250 V :	$0.1 \ldots 25 \mathrm{~A}$ 10,000 operations at $1 \times I_{N}$, inductive $0.1 . . .32 \text { A }$ 10,000 operations at $1 \times I_{N}$, inductive $32 \mathrm{~A}$ 10,000 operations at $1 \times I_{N}$, resistive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right) \mathrm{T} 60$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area main/aux. circuit pole/pole	test voltage AC 3,000 V AC $3,000 \mathrm{~V}$ AC 1,500 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn} curves F1, F2, M1, T1: curve T2 : curve M3:	$0.1 \ldots 5 \mathrm{~A}$ 400 A $6 \ldots . .32 \mathrm{~A}$ 800 A $0.1 \ldots 16 \mathrm{~A}$ $2,500 \mathrm{~A} \quad$ (at DC 32 V) $0.1 \ldots 32 \mathrm{~A}$ $15 \times \mathrm{I}_{\mathrm{N}}$ $0.1 \ldots 2 \mathrm{~A}$ AC $200 \mathrm{~A} / \mathrm{DC} 400 \mathrm{~A}$
Interrupting capacity $\begin{array}{ll}\text { (UL 1077) } & I_{N} \\ & 1-+2 \text {-pole } \\ & 3 \text {-pole } \\ & 1-+2 \text {-pole }\end{array}$	$0.1 \ldots . .16 \mathrm{~A}$ $20 \ldots 32 \mathrm{~A}$ AC $277 \mathrm{~V} / 5,000 \mathrm{~A}$ AC $277 \mathrm{~V} / 2,000 \mathrm{~A}$ $3 \mathrm{AC} 480 \mathrm{~V} / 5,000 \mathrm{~A}$ $3 \mathrm{AC} 480 \mathrm{~V} / 2,000 \mathrm{~A}$ DC $65 \mathrm{~V} / 2,000 \mathrm{~A}$ DC $65 \mathrm{~V} / 2,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 terminal area IP20
Vibration curve F1: curves M1, M3, T1, T2:	$\begin{aligned} & 3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & 5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6 \text {, test } \mathrm{Fc} \\ & 10 \text { frequency cycles/axis } \end{aligned}$
```Shock curve F1: curves M1, M3, T1, T2:```	25 g (11 ms), directions 1, 2, 3, 4, 5   $10 \mathrm{~g}(11 \mathrm{~ms})$, direction 6   25 g (11 ms), directions 1, 2, 3, 4, 5   $20 \mathrm{~g}(11 \mathrm{~ms})$, direction 6   to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 60 g per pole

Standard current ratings and typical internal resistance values

Current   rating   (A)	Internal resistance (R)   F1   fast acting   far	F2   fast acting   delay   for AC + DC	M1   standard   for AC + DC	T1   delayed   low resistance   nur für AC	M3   standard delay	T2   for + DC
thermal						
for AC + DC						

## Dimensions



Installation drawing


## 

Internal connection diagrams

## ...-H131-...


...-H121-...


Shock directions


Typical time/current characteristics

-F2 0.1 ... 7.5 A
AC/ DC ${ }^{1)}$

-F2 8 ... 16 A
AC/ DC ${ }^{11}$

${ }^{11}$ Magnetic tripping currents are increased by $30 \%$ on DC supplies.

## Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+86	+104	+122	+140	
	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+30	+40	+50	+60
Derating factor	0.76	0.79	0.83	0.88	1	1.04	1.11	1.19	1.29	

Multi pole devices: all poles symmetrically loaded. With single pole overload, thermal tripping will be at max. $1.7 \times I_{N}$ with curves F1, F2, M1 and $T 2$, and at max. $2.2 \times \mathrm{I}_{\mathrm{N}}$ with curve M3.
${ }^{1)}$ Magnetic tripping currents are increased by $30 \%$ on DC supplies.


-T2 0.1 ... 6 A
AC/DC


-M3 $0.1 \ldots 5$ A AC/DC ${ }^{11}$



[^13]


## Accessories

## Connector bus links -K10

X210 589 01/2.5 mm², (AWG 14) (black) up to 20 A max. load X210 589 02/1.5 mm², (AWG 16) (brown) up to 13 A max. load


## Busbar 1-pole, $90^{\circ}$

X 22254001
The one metre long busbars can be cut to suitable lengths Plug-on caps can be fitted on the ends to provide brush contact protection.
$I_{\text {max }}$ - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$


Plug-on cap, 1-pole Y 30785101


Busbar 1-pole
Y 30849801
Imax - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$


## Busbar 2-pole

Y 30849901
Imax-busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$


Plug-on cap, busbar 2/3-pole Y 30850601


Busbar 3-pole
Y 30850001
Imax - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$


Supply terminal
Y 30850301
$I_{\max } 63$ A with 1-pole busbar,
50 A with multipole busbar
Max. tightening torque of terminal screw 2 Nm
Max. cable cross section: $25 \mathrm{~mm}^{2}$ / single strand
$16 \mathrm{~mm}^{2}$ / multistrand with wire end ferrule


## Caution:

When using multipole busbars please leave at least one pole's width between two adjacent line entry terminals.

[^14][^15]
## 

## Description

Miniaturised single pole thermal-magnetic circuit breakers with trip-free mechanism and toggle actuation (S-type TM CBE to EN 60934). Two designs provide the option of either printed circuit board or threadneck panel mounting. A separate shunt tap terminal and auxiliary contacts are available. Fast acting, medium or long delay characteristics can be specified for both models.
Suitable for use in distribution rails - see section 7.
Complies with CBE standard EN 60934 (IEC 60935).

## Typical applications

Control equipment, communications systems, instrumentation.
Suitable for mounting on Euro cards.

## Ordering information

## Type No.

2215 single pole thermal-magnetic circuit breaker
Mounting
G1 threadneck panel mounting
L1 PCB mounting
Number of poles
1 1-pole protected
Mounting hardware
0 without accessories
12 hex nuts 1/4"-40 UNS-2A, serrated washer,
location pin (-G1 only)
Terminal design (main contacts)
P1 blade terminals 6.3-0.8, without shunt termina
B1 blade terminals 6.3-0.8, with shunt terminal
L1 solder pins, without shunt terminal
M1 solder pins, with shunt terminal
Characteristic curve
F1 fast acting:1.01-1.4x| ${ }_{N}$; magn.2-4x| ${ }_{N}$ DC (DC only)
M1 standard delay: therm. 1.01-1.4 $\mathrm{I}_{\mathrm{N}}$;
magn. $4.5-10.5 \mathrm{xI}_{N}$ DC; magn. $3.5-8 \mathrm{xI}_{N} \mathrm{AC}$
T1 delayed: therm. 1.01-1.4x| ${ }_{N}$; DC
magn. $8-17 \mathrm{XI}_{N} \mathrm{DC}, 6-13 \mathrm{xI}_{N} A C$
T3 delayed: therm.1.01-1.4x1 ${ }_{N}$; magn.13-20x| ${ }_{N}$ DC
magn. 9.5-15.5xI $A C$
Auxiliary contacts
S0 without auxiliary contact
S1 with auxiliary contact (change over)
Auxiliary contact - terminal design
1 blade terminals $6.3 \times 0.8$ (QC .250)
$2 \quad$ solder pins
Current ratings
0.05... 10 A

2215-G1 1 1-P1 F1-S11-0.5 A ordering example

Standard current ratings and typical internal resistance values

Current   ratings $(\mathrm{A})$	Internal   resistance $(\Omega)$	Current   ratings $(\mathbf{A})$	Internal   resistance $(\Omega)$
0.05	440	1.5	0.55
0.1	108	2	0.34
0.2	29.9	2.5	0.21
0.3	14.2	3	0.15
0.4	7.9	4	0.084
0.5	5.0	5	0.057
0.6	3.5	6	0.043
0.8	1.8	8	$\leq 0.02$
1	1.2	10	$\leq 0.02$



2215-L1..


2215-G1...

Technical data

Voltage rating	AC 250 V ( $50 / 60 \mathrm{~Hz}$ ); DC 50 V (UL: AC 250 V; DC 75 V)
Current rating range	$0.05 \ldots 10 \mathrm{~A}$   (higher current ratings to special order)
Auxiliary circuit	1 A, AC 250 V/DC 28 V
Typical life	10,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution   withstand voltage $\quad$ degree    2.5 kV 2   reinforced insulation in operating area
Dielectric strength IEC 60664 and 60664A) operating area main/aux. circuit	test voltage   AC $3,000 \mathrm{~V}$   AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	300 A
Interrupting capacity (UL 1077)	$I_{\mathrm{N}}$ $\mathrm{U}_{\mathrm{N}}$    0.05 A AC 250 V 200 A   $0.1 \ldots 6 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$   $8 \ldots 10 \mathrm{~A}$ AC 250 V $2,000 \mathrm{~A}$   $0.05 \ldots 10 \mathrm{~A}$ DC 50 V $1,000 \mathrm{~A}$   $0.05 \ldots 10 \mathrm{~A}$ DC 75 V 800 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 terminal area IP00
Vibration curve F1: curves M1, T1, T3:	$\begin{aligned} & 6 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & 8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6, \text { test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock curves F1, M1, T1, T3: curve F1: curves M1, T1, T3:	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \text {, directions } 1,2,3,4,5 \text {, } \\ & 10 \mathrm{~g}(11 \mathrm{~ms}) \text {, direction } 6 \\ & 15 \mathrm{~g}(11 \mathrm{~ms}) \text {, direction } 6 \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 25 g

Approvals

Authority	Voltage ratings	Current ratings
UL	AC 250 V	$0.05 \ldots 10 \mathrm{~A}$
	DC 75 V	$0.05 \ldots 20 \mathrm{~A}$
CSA	AC 250 V ; DC 48 V	$0.05 \ldots 10 \mathrm{~A}$

Dimensions 2215-L1..


Dimensions 2215-G1..


Installation drawing


Internal connection diagram


Shock directions


## 

## Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.
0.05... 10 A:

Ambient temperature ${ }^{\circ} \mathrm{F}-22|-4|+14|+32|+50|+73.4|+86|+104|+122 \mid+140$

Derating factor

DC only
M1 0.05 ... 6 A
AC/DC ${ }^{11}$
F1 0.05 ... 6 A
DC only
-F1 $8 . . .10$ A
-..


T1 0.05 ... 6 A


T1 8 ... 10 A
AC/DC ${ }^{1)}$

${ }^{1)}$ Magnetic tripping currents are increased by $30 \%$ on DC supplies (curve M1 and T1).

Typical time/current characteristics

${ }^{11}$ Magnetic tripping currents are increased by $30 \%$ on DC supplies.

## ZETAO Thermal-Magnetic Circuit Breaker 2215-F1..

## Description

Miniaturised two pole thermal-magnetic circuit breakers with trip-free mechanism and toggle actuation (S-type TM CBE to EN 60934). Fitted with panel mounting flange and push-on termination, also suitable for mounting on Euro Cards. Available with auxiliary contacts and a choice of fast, medium or long delay characteristics.
Complies with CBE standard EN 60934 (IEC 60934).

## Typical applications

Control equipment, communications systems, instrumentation.

Standard current ratings and typical internal resistance values

Current   ratings (A)	Internal resistance   per pole ( $\Omega$ )	Current   ratings (A)	Internal resistance   per pole ( $\Omega$ )
0.05	440	1.5	0.55
0.1	108	2	0.34
0.2	29.9	2.5	0.21
0.3	14.2	3	0.15
0.4	7.9	4	0.096
0.5	5.0	5	0.069
0.6	3.5	6	0.055
0.8	1.8	8	$\leq 0.02$
1	1.2	10	$\leq 0.02$



Technical data

Voltage rating	AC 250 V ( $50 / 60 \mathrm{~Hz}$ ); DC 50 V (UL: AC 250 V ; DC 75 V ) (higher DC voltage to special order)
Current rating range	0.05...10 A
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V} / \mathrm{DC} 28 \mathrm{~V}$ resistive load
Typical life	10,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength   (IEC 60664 and 60664A)   operating area   pole/pole   main/aux. circuit	test voltage   AC $3,000 \mathrm{~V}$   AC $1,500 \mathrm{~V}$   AC 1,500 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity Icn	600 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 terminal area IP00
Vibration curve F1: curves M1, T1, T3:	$\begin{aligned} & 6 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & 8 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6, \text { test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$

Shock
curves F1, M1, T1, T3: 30 g (11 ms), directions 1, 2, 3, 4, 5
curve F1: $\quad 10 \mathrm{~g}(11 \mathrm{~ms})$, direction 6
curves M1, T1, T3: $15 \mathrm{~g}(11 \mathrm{~ms})$ direction 6 to IEC 60068-2-27, test Ea

Corrosion	96 hours at $5 \%$ salt mist   to IEC 60068-2-11, test Ka
Humidity	240 hours at $95 \%$ RH   to IEC $60068-2-78$, test Cab
Mass	approx. 50 g


Corrosion	96 hours at $5 \%$ salt mist   to IEC 60068-2-11, test Ka
Humidity	240 hours at $95 \%$ RH   to IEC $60068-2-78$, test Cab
Mass	approx. 50 g


Corrosion	96 hours at $5 \%$ salt mist   to IEC 60068-2-11, test Ka
Humidity	240 hours at $95 \%$ RH   to IEC $60068-2-78$, test Cab
Mass	approx. 50 g

Dimensions 2215-F1...


## Internal connection diagram



Shock directions


Installation drawing


## 

## Typical time/current characteristics

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.
0.05... 10 A:

 \begin{tabular}{ll|l|l|l|l|l|l|l|l|l}
${ }^{\circ} \mathrm{C}$ \& -30 \& -20 \& -10 \& 0 \& +10 \& +23 \& +30 \& +40 \& +50 \& +60 <br>
\hline

 $\left.$

\hline 0.76 \& 0.79 \& 0.83 \& 0.88 \& 0.93 \& 1 \& 1.04 \& 1.11
\end{tabular} 1.19 \right\rvert\, 1.29

AC/DC ${ }^{11}$

-T1 $0.05 \ldots 6$ A
AC/DC ${ }^{1)}$
-T1 8... $10 \mathrm{~A} \quad$ AC/DC ${ }^{11}$


${ }^{1)}$ Magnetic tripping currents are increased by $30 \%$ on DC supplies (curve M1 and T1).

## E <br> ET-A゚

Typical time/current characteristics

${ }^{11}$ Magnetic tripping currents are increased by $30 \%$ on DC supplies.

## 

## Description

Single or two pole rocker switch/thermal-magnetic circuit breaker with trip-free mechanism (S-type TM CBE to EN 60934). The addition of a magnetic tripping module to the type 3120 range described in catalogue section 1 extends the choices available to include single pole with thermal-magnetic protection; double pole switching with thermalmagnetic protection on one pole, thermal protection on the other; double pole switching with thermal-magnetic protection on one pole only. All are offered with rocker switch or push button control - two buttons for ON/OFF or one button press-to-reset only, in designs to suit one of three different panel cut-out sizes. Illumination is optional.
Approved to CBE standard EN 60934 (IEC 60934).
Meets the requirements regarding fire resistance of EN 60335-1 : 2007-02 Safety of household and similar electrical appliances.

## Typical applications

Motors, machine tools, office equipment, appliances.

Standard current ratings and typical internal resistance values

Current ratings   (A)	Internal resistance per pole ( $\Omega$ )   thermal-magn.   thermal	
0.1	165	94
0.2	42.5	24
0.3	20.2	12
0.4	9.7	5.40
0.5	7.17	4.30
0.6	4.9	3
0.8	2.65	1.50
1	1.49	0.9
1.2	1.25	0.7
1.5	0.74	0.45
2	0.49	0.29
2.5	0.20	0.0785
3	0.14	0.0595
3.5	0.114	0.0565
4	0.092	0.0435
5	0.06	0.0325
6	0.043	0.0215
7	0.030	0.0215
8	0.029	0.02
10	0.021	0.02
12	$<0.02$	$<0.02$
14	$<0.02$	$<0.02$
15	$<0.02$	$<0.02$
16		$<0.02$

## Illumination voltage / Power consumption

Operating voltage	Power consumption   G + R		
6 V	2 mA	3.6 mA	4.9 mA
12 V	2 mA	3.5 mA	4.9 mA
24 V	2 mA	3.5 mA	4.9 mA
48 V	2 mA	3.5 mA	4.9 mA
115 V	0.9 mA	2.8 mA	2.2 mA
230 V	0.9 mA	2.8 mA	2.2 mA



Technical data

Degree of protection (IEC 60529/DIN 40050)	operating area IP40   (with water splash protection IP54) terminal area IP00
Vibration	$8 \mathrm{~g}(57-500 \mathrm{~Hz}) \pm 0.61 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 30 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 53 g (2-pole)   approx. 50 g (1-pole)


Voltage rating		AC 240 V ( $50 / 60 \mathrm{~Hz}$ ); DC 50 V		
Current ratings		0.1...16 A		
Typical life		1-pole		
AC 240 V :	0.1... 20 A	30,000 operations at $1 \times I_{N}$, inductive		
DC 50 V :	0.1... 4 A	30,000 operations at $1 \times I_{N}$, inductive		
	4.5..16 A	30,000 operations at $1 \times I_{N}$, resistive		
DC 28 V :	4.5..20 A	30,000 operations at $1 \times I_{N}$, inductive2-pole		
AC 240 V :	0.1..16 A	50,000 operations at $1 \times I_{N}$, inductive		
	17... 20 A	30,000 operations at $1 \times I_{N}$, inductive		
DC 50 V :	0.1..16 A	50,000 operations at $1 \times I_{N}$, inductive 10,000 operations at $1 \times I_{N}$, inductive		
	17... 20 A			
Ambient temperature		$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$		
Insulation co-ordination (IEC 60664 and 60664 A)		rated impulse pollution   withstand voltage $\quad$ degree    2.5 kV 2   reinforced insulation in operating area		
Dielectric strength (IEC 60664 and 60664A) operating area current path/current path		test voltage   AC $3,000 \mathrm{~V}$   AC $1,500 \mathrm{~V}$		
Insulation resistance		$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$		
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$		$\begin{array}{ll} 0.1 \ldots 2 \mathrm{~A} & 100 \times \mathrm{I}_{\mathrm{N}} \\ 2.5 \ldots 16 \mathrm{~A} & 250 \mathrm{~A} 2 \text {-pole } \\ & 150 \mathrm{~A} 1 \text {-pole } \end{array}$		
Interrupting capacity (UL 1077)		$\mathrm{I}_{\mathrm{N}}$ $\mathrm{U}_{\mathrm{N}}$    $0.1 \ldots 4 \mathrm{~A}$ AC 250 V 200 A   $5 \ldots 10 \mathrm{~A}$ AC 250 V $2,000 \mathrm{~A}$   $12 \ldots 14 \mathrm{~A}$ AC 125 V $1,000 \mathrm{~A}$		

## For further details please see chapter: Technical Information



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.


Approvals		
Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V ; DC 28 V	$0.1 \ldots 16 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 16 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 10 \mathrm{~A}$
	AC 250 V	$0.1 \ldots 10 \mathrm{~A}$
CSA, UL	AC 125 V	$0.1 \ldots 16 \mathrm{~A}$
	AC $250 \mathrm{~V} ;$ DC pole 50 V	$0.1 \ldots 20 \mathrm{~A}$
CCC		

## 

## Dimensions

Mounting style -F3.1, with rocker - Collar height 1 mm


Installation drawing


## Cut-out dimensions



## Mounting frame variants

Mounting style F3.3 with rocker
collar height 9 mm (. 354 in .)


Mounting style F3.4 with rocker
collar height $2 \mathrm{~mm}(.079 \mathrm{in}$.), with water splash protection


Mounting style F3.F-...-S-...
with 2 push buttons


Mounting style F3.G-...-D-...
with 1 push button


For mounting styles -F2.., -F5.., -F6.. please see section 1.

## Internal connection diagrams

```
therm.-magn. protection on one pole therm.-magn. protection on one pole
```

thermally protected on the other pole unprotected on the other pole



Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

${ }^{1)}$ Magnetic tripping currents are increased by $25 \%$ on DC supplies.
The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4|+14|+32|+73.4|+104|+122 \mid+140$ | Ambient temperature ${ }^{\circ} \mathrm{C}$ | -22 | -4 | -14 | +32 | +73.4 | +104 | +122 | +140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | -20 | -10 | 0 | +23 | +40 | +50 | +60 |  |
| Derating factor | 0.8 | 0.76 | 0.84 | 0.92 | 1 | 1.08 | 1.16 | 1.24 |

## Accessories

Insulated cover
Y 30306801



Spacer for 3120-F3...
Y 303675 01/02
Spacer for 3120-F5...


* Y 30367501 suitable for panel thickness < 2 mm (. 079 in )

Y 30367502 suitable for panel thickness < 4 mm (. 157 in)
Blanking piece in -F3... size mounting frame Y 30388531


Separate water splash cover, transparent (IP66) for use with -F5.. size mounting frames
X 22161901


This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

## 

## Description

Single or two pole rocker switch/thermal-magnetic circuit breaker with trip-free mechanism (S-type TM CBE to EN 60934). The addition of a magnetic tripping module to the type 3120 range described in catalogue section 1 extends the choices available to include single pole with thermalmagnetic protection; double pole switching with thermal-magnetic protection on one pole, thermal protection on the other; double pole switching with thermal-magnetic protection on one pole only. All are offered with rocker switch actuation. Illumination is optional.

Approved to CBE standard EN 60934 (IEC 60934).
Meets the requirements regarding fire resistance of EN 60335-1 : 2007-02 Safety of household and similar electrical appliances.

## Typical applications

Motors, machine tools, office equipment, appliances.

Standard current ratings and typical internal resistance values

Current ratings   (A)	Internal resistance per pole ( $\Omega$ )   thermal-magn.	thermal
0.1	165	94
0.2	42.5	24
0.3	20.2	12
0.4	9.7	5.40
0.5	7.17	4.30
0.6	4.9	3
0.8	2.65	1.50
1	1.49	0.9
1.2	1.25	0.7
1.5	0.74	0.45
2	0.49	0.29
2.5	0.20	0.0785
3	0.14	0.0595
.5	0.114	0.0565
4	0.06	0.0435
5	0.043	0.0325
6	0.030	0.0215
7	0.029	0.0215
8	0.021	0.02
10	$<0.02$	0.02
12	$<0.02$	$<0.02$
14	$<0.02$	$<0.02$
15		$<0.02$
16		$<0.02$

## Illumination voltage / Power consumption

Operating voltage	Power consumption   LED
6 V	4.9 mA
12 V	4.9 mA
24 V	4.9 mA
48 V	4.9 mA
115 V	2.2 mA
230 V	2.2 mA



Technical data

## For further details please see chapter: Technical Information



Ordering information
Type
3120 rocker switch/circuit breaker

## Mounting <br> F snap-in frame

Size of frame
7 to fit in cut-out $44.5 \times 22 \mathrm{~mm}$
panel thickness
Number of poles
1 1-pole, thermal-magnetic protection
2 2-pole, thermal-magnetic protection on one pole, thermally protected on the other pole
5 2-pole, thermal-magnetic protection on one pole, unprotected on the other pole
Mounting frame design
N new design, grey
$\bar{P} \quad$ snap-on actuator guard grey
Q snap-on splash cover grey
R new design, black
S snap-on actuator guard black
T snap-on splash cover black
Terminal configuration
P7 blade terminals $2 \times 2.8-0.8 \mathrm{~mm}$ (QC $2 x .110$ ) (terminals 12(k), 22(k), 11, 21)
H7 12(k), 22(k): blade terminals 2x2.8-0.8 (QC $2 x .110$ ) 11, 21: terminal screws M3.5,
blade terminals $2 \times 2.8-0.8$ (QC $2 \times .110$ )
N7 as P7, but shunt terminals (12(i) and 22(i))
are blade terminals $2 \times 2.8-0.8$ (QC 2x.110)
G7 as H7, but shunt terminals (12(i) and 22(i)) are blade terminals $2 \times 2.8-0.8$ (QC $2 x .110$ )
Characteristic curve
M1 standard delay, therm. 1.01-1.4 $\times I_{N}$;
magn. $4-9 \times I_{N} A C$
Betätigungselement
A Switch style
Switch colour designation


Q permanently raised marking
Rocker illumination
T LED, blue
Illumination voltage range
(= operating voltage)
$0 \quad 4-7 \mathrm{~V}$
$1 \quad 10-14 \mathrm{~V}$

$20-28 \mathrm{~V}$


3
3

4 185-275V $5 \quad 42-54 \mathrm{~V} \quad \mathrm{AC} / \mathrm{DC}$

Current ratings
$0.1 \ldots 16 \mathrm{~A}$
3120-F7 2 N - N7 M1-A 30 Q T 4-10A ordering example

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC $240 \mathrm{~V} ;$ DC 28 V	$0.1 \ldots 16 \mathrm{~A}$
	DC 50 V	$0.1 \ldots 16 \mathrm{~A}$
	dC 50 V	$0.1 \ldots 10 \mathrm{~A}$
	AC 250 V	$0.1 \ldots 10 \mathrm{~A}$
CSA, UL	AC 125 V	$0.1 \ldots 16 \mathrm{~A}$
CCC	AC $250 \mathrm{~V} ;$ DC 50 V	$0.1 \ldots 20 \mathrm{~A}$

## Internal connection diagrams

therm.-magn. protection on one pole therm.-magn. protection on one pole thermally protected on the other pole unprotected on the other pole


Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

## Single or double pole load

0.1 ... 2 A

AC/DC ${ }^{1)}$

2.5 ... 16 A

AC/DC ${ }^{1)}$

${ }^{1)}$ Magnetic tripping currents are increased by $25 \%$ on DC supplies.
The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4|+14|+32|+73.4|+104|+122 \mid+140$ | ${ }^{\circ} \mathrm{C}$ | -22 | -4 | +14 | +32 | +73.4 | +104 | +122 | +140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +23 | +40 | +50 | +60 | Derating factor

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0.8 & 0.76 & 0.84 & 0.92 & 1 & 1.08 & 1.16 & 1.24 \\
\hline
\end{array}
$$

## 

Dimensions

Mounting style -F7.N and -F7.R


Mounting style -F7.P and -F7.S


## Mounting style -F7.Q and -F7.T



## Installation drawing



Cut-out dimensions


Accessories

## Insulated cove

Y 30306801


Spacer for 3120-F7...
Y 30367601


Translucent water splash cover (IP54)
X 22214301
Consisting of

- Y 30709701 snap-on frame with actuator guard
- Y 30709601 soft plastic cover


Snap-on frame with actuator guard (can be snapped on as switch-on protection or switch-off protection)
Y 30709701



This is a metric design and millimeter dimensions take precedence ( $\left.\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

## 

## Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, press-to-reset, snap action mechanism and additional manual release (M-type TM CBE to EN 60934). Designed for plug-in mounting with E-T-A sockets 10 and 16.
Approved to CBE standard EN 60934 (IEC 60934)

## Typical applications

Control equipment, extra-low voltage wiring systems and components.


Standard current ratings and typical internal resistances

Current   rating (A)	Internal   resistance ( $\Omega)$	Current   rating (A)	Internal   resistance ( $\Omega$ )
0.05	534	4	0.141
0.1	149	5	0.107
0.2	56	6	0.060
0.3	24.2	7	0.049
0.4	13.6	8	$<0.02$
0.5	8.1	10	$<0.02$
0.6	5.25	12	$<0.02$
0.8	3.55	14	$<0.02$
1	2.02	15	$<0.02$
1.5	0.90	16	$<0.02$
2	0.51	18	$<0.02$
2.5	0.36	20	$<0.02$
3	0.23	25	$<0.02$

## Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V; DC 28 V	$0.05 \ldots .25 \mathrm{~A}$
CSA	AC 250 V; DC 28 V	$0.05 \ldots 15 \mathrm{~A}$



Technical data

## For further details please see chapter: Technical Information

Voltage rating	AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 28 V
Current ratings	0.05... 25 A
Typical life	500 operations at $1 \times I_{N}$, inductive 4,000 operations at $1 \times I_{N}$, resistive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution   withstand voltage degree   2.5 kV 2   reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC 3,000 V double insulation
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$ )
Interrupting capacity $\mathrm{I}_{\mathrm{cn}}$	$0.05 \ldots 0.8 \mathrm{~A}$ self-limiting   $1 \ldots 2 \mathrm{~A}$ 200 A   $2.5 \ldots 25 \mathrm{~A}$ 400 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at $5 \%$ salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 50 g

Dimensions


Installation drawing


Internal connection diagram


This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4|+14|+32|+73.4|+104|+122 \mid+140$

	${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
Derating factor		0.76	0.79	0.83	0.88	1	1.08	1.16	1.24

Typical time/current characteristics



Blanking plug
Y 30147701
for sockets 10R-P10/K10/A10
Terminal for mounting rack (DIN/EN 50 035-G32)
X 20080001
for sockets 10R


Connector bus links -K10
X 210589 01/ $2.5 \mathrm{~mm}^{2}$, (AWG 14) (black) up to 20 A max. load X 210589 02/ $1.5 \mathrm{~mm}^{2}$, (AWG 16) (brown) up to 13 A max. load for sockets 10R-P10, 10R-A10 and 16


## Connector bus links -P10

X 210588 01/ $1.5 \mathrm{~mm}^{2}$, (AWG 16) (brown) up to 13 A max. load X 210588 02/ $2.5 \mathrm{~mm}^{2}$, (AWG 14) (black) up to 20 A max. load X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14) (red) up to 20 A max. load X 210588 04/ $2.5 \mathrm{~mm}^{2}$, (AWG 14) (blue) up to 20 A max. load for sockets 10R-P10, 10R-A10

100 quick-connect tabs 6.3 (.250)
DIN 46247 tinned brass,
insulated


This is a metric design and millimeter dimensions take precedence ( $\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

## 层E-TAO Thermal-Magnetic Circuit Breakers 3300/3400

## Description

Single pole thermal-magnetic circuit breakers with tease-free, trip-free, press-to-reset, snap action mechanism (R-type TM CBE to EN 60934 M-type with manual release (-H). Available with fast acting and standard magnetic tripping characteristics - types 3300 and 3400 - both with threadneck panel mounting. Options include auxiliary contacts, a separate shunt tap terminal (-A3), and pull-to-trip manual release (-H) Approved to CBE standard EN 60934 (IEC 60934).

## Typical applications

Control systems, instrumentation, medical equipment, machine tools, robotics

## Ordering information



The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current	Internal resistance ( $\Omega$ )		Current		
ratings (A)	$\mathbf{3 3 0 0}$	$\mathbf{3 4 0 0}$	ratings (A)	Internal resistance ( $\Omega$ )	
0.05	447	211	3	0.18	0.19
0.1	131	131	4	0.109	0.090
0.2	41	40	5	0.066	0.061
0.3	19.6	19.3	6	0.046	0.041
0.4	10.4	10.4	7	0.032	0.034
0.5	7.2	7.1	8	0.02	$\leq 0.02$
0.6	4.8	4.3	10	$\leq 0.02$	$\leq 0.02$
0.8	2.5	2.5	12	$\leq 0.02$	$\leq 0.02$
1	1.93	1.67	13	$\leq 0.02$	$\leq 0.02$
1.5	0.81	0.61	14	$\leq 0.02$	$\leq 0.02$
2	0.44	0.38	15	$\leq 0.02$	$\leq 0.02$
2.5	0.27	0.24	16	$\leq 0.02$	$\leq 0.02$



Technical data

For further details please see chapter: Technical Information

Voltage rating	AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ;$ DC 65 V (UL: AC 250 V ; DC 80 V )
Current ratings	0.05...16 A
Auxiliary circuit	1 A, AC $240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
```Typical life ```	5,000 operations at $1 \times I_{N}$, inductive 5,000 operations at $2 \times I_{N}$, resistive 5,000 operations at $2 \times I_{N}$, inductive 1,500 operations at $2 \times I_{N}$, inductive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A) operating area	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area main circuit/aux. circuit aux. circuit 4-5/6-7	test voltage AC $3,000 \mathrm{~V}$ double insulation AC $1,500 \mathrm{~V}$ AC 840 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.05 \ldots 0.8 \mathrm{~A}$ self-limiting $1 \ldots 2 \mathrm{~A}$ 200 A $2.5 \ldots 16 \mathrm{~A}$ 400 A
Interrupting capacity (UL 1077)	I_{N} U_{N} $0.05 \ldots 16 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$ $0.05 \ldots 16 \mathrm{~A}$ DC 80 V $1,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95% RH, to IEC 60068-2-78, test Cab
Mass	3300: approx. 55 g 3400: approx. 50 g

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V ; DC 65 V	$0.05 \ldots 16 \mathrm{~A}$
CSA, UL	AC 250 V ; DC 80 V	$0.05 \ldots . .16 \mathrm{~A}$
UL: only type 3400	DC 65 V	$0.05 \ldots 25 \mathrm{~A}$

Dimensions

Installation drawing

Internal connection diagrams

Terminal design

EEE-A゚ Thermal-Magnetic Circuit Breakers 3300/3400

Typical time/current characteristics

Accessories

For push buttons with M12 moulded threadneck (-iG2) (not with manual release -H)

Hex nut with splash cover

 X 20129601 black (IP64)X 20080108 transparent with O-ring (IP66 and IP67)

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F}$	-22	-4	+14	+32	+73.4	+104	+122	+140
${ }^{\circ} \mathrm{C}$	-30	-20	-10	0	+23	+40	+50	+60
	0.76	0.79	0.83	0.88	1	1.08	1.16	1.24

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

甶 E-TFA Thermal-Magnetic Circuit Breakers 3500/4000

Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Featuring a flange for panel mounting, and optional auxiliary contacts and unprotected shunt tap terminal. Type 4000 offers lower internal resistance values and is fitted as standard with auxiliary contacts and an intermediate reset position in which all contacts are isolated.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Control systems, instrumentation, medical equipment, machine tools, robotics, communications systems.

Ordering information

Type No.

3500 standard version
4000 low resistance version
Mounting (optional)
F11 flange with additional M3 insertion nuts
Terminal design
P10 blade terminals 6.3-0.8 (QC .250), tinned
K20 screw terminals M3.5x5.5 with clamp
(not with -Si or type 4000)
Shunt terminal (optional)
A3 same as main terminals
(up to $I_{N}=7 \mathrm{~A}, \max . \operatorname{load} 5 \mathrm{~A}$)
Auxiliary contacts (optional with type 3500)
Si auxiliary contacts, silver plated
terminals one each N/O and N/C
ZR-Si auxiliary contacts with intermediate
position (standard with type 4000)
Current ratings
0.05... 16 A (type 3500)
0.05... 10 A (type 4000)
$3500-$.. -P10 - A3 - Si - 10 A ordering example
The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current ratings (A)	Internal resistance (Ω)		Current ratings (A)	Internal resistance (Ω)	
	3500	4000		3500	4000
0.05	447	211	3	0.19	0.054
0.1	131	48	4	0.090	0.035
0.2	40	12.4	5	0.061	0.025
0.3	19.3	5.4	6	0.041	≤ 0.02
0.4	10.4	3.1	7	0.034	≤ 0.02
0.5	7.1	2.0	8	≤ 0.02	≤ 0.02
0.6	4.3	1.32	10	≤ 0.02	≤ 0.02
0.8	2.5	0.76	12	≤ 0.02	
1	1.67	0.49	14	≤ 0.02	
1.5	0.61	0.21	15	≤ 0.02	
2	0.38	0.101	16	≤ 0.02	
2.5	0.24	0.078			

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz} ;$ DC 65 V (UL: AC 250 V ; DC 80 V)
Current rating range	$\begin{aligned} & \text { 3500: } 0.05 \ldots 16 \mathrm{~A} \\ & \text { 4000: } 0.05 \ldots 10 \mathrm{~A} \end{aligned}$
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
Typical life	5,000 operations at $1 \times I_{N}$, inductive 5,000 operations at $2 \times I_{N}$, resistive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C} \quad\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area main/aux. circuit aux. circuit 4-5/6-7	test voltage AC 3,000 V AC $1,500 \mathrm{~V}$ AC 840 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	3500 4000 $0.05 \ldots 0.8 \mathrm{~A}$ $0.05 \ldots 0.2 \mathrm{~A}$ self-limiting $1 \ldots 2 \mathrm{~A}$ $0.3 \ldots 2 \mathrm{~A}$ 200 A $2.5 \ldots 16 \mathrm{~A}$ $2.5 \ldots .10 \mathrm{~A}$ 400 A
Interrupting capacity (UL 1077) type 3500:	I_{N} U_{N} $0.05 \ldots 16 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$ $0.05 \ldots 16 \mathrm{~A}$ DC 80 V $1,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 40 g

Approvals

Authority	Voltage ratings	Current ratings
3500:		
VDE (EN 60934)	AC 240 V ; DC 65 V	0.05...16 A
CSA, UL	AC 250 V ; DC 80 V	0.05...16 A
UL	DC 65 V	0.05... 25 A
4000:		
VDE (EN 60934)	AC 240 V ; DC 65 V	0.05...10 A
CSA	AC 250 V ; DC 80 V	0.05...10 A

Dimensions

Version -P10

Installation drawing

Internal connection diagrams

Terminal design

E-TAP Thermal-Magnetic Circuit Breakers 3500/4000

Typical time/current characteristics

${ }^{1)}$ Magnetic tripping currents are increased by 20% on DC supplies.
${ }^{2)}$ Magnetic tripping currents are decreased by 20% on AC supplies.

The time/current characteristic curve depends on the ambient temperature prevailing. In order to eliminate nuisance tripping, please multiply the circuit breaker current ratings by the derating factor shown below. See also section 9 - Technical information.

Ambient temperature ${ }^{\circ} \mathrm{F} \quad-22|-4|+14|+32|+73.4|+104|+122 \mid+140$ | ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +23 | +40 | +50 | +60 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.76 | 0.79 | 0.83 | 0.88 | 1 | 1.08 | 1.16 | 1.24 | |

Special version 3500-...-2100

Single pole thermal-magnetic overcurrent circuit breaker with slow magnetic trip curve, suitable for high inrush currents (up to $12 \times \mathrm{I}_{\mathrm{N}}$). Suffix -2100 is also available for types 3400 and 3600.
Enquire for further details.

Typical applications

Industrial control systems, telecommunications, etc.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.06	292	3	0.18
0.1	165	4	0.11
0.2	41.7	5	0.067
0.3	19.7	6	0.052
0.4	12.1	7	0.035
0.5	7.9	8	0.031
0.6	5.5	10	0.022
0.8	2.6	12	≤ 0.02
1	1.88	14	≤ 0.02
1.5	0.77	15	≤ 0.02
2	0.42	16	≤ 0.02
2.5	0.24		

Typical time/current characteristics at $+23^{\circ} \mathrm{C}$

Special version 3500-...-2350

Single pole thermal-magnetic circuit breaker suitable for high ambient temperatures. The special rating of the circuit breaker allows resetting at no load in ambient temperatures up to $+80^{\circ} \mathrm{C}$.
Suffix -2350 is also available for types 3400 and 3600. Enquire for further details.

Typical applications

Industrial control systems

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	583	2.5	0.42
0.1	167	3	0.21
0.2	49.9	4	0.13
0.3	23.1	5	0.11
0.4	12.8	6	0.056
0.5	8.7	10	0.022
0.8	3.45	12	≤ 0.02
1	2.3	15	≤ 0.02
1.5	0.89	16	≤ 0.02
2	0.48		

Typical time/current characteristics

Description

Single pole thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and two button operation (M-type TM CBE to EN 60934). Designed for plug-in mounting with E-T-A sockets 17-P10-Si, 23-P10-Si, 63-P10-Si; or panel mounting using E-T-A clips. Featuring an unprotected shunt tap terminal and optional auxiliary contacts. Type 3900 offers lower internal resistance values and is fitted as standard with auxiliary contacts and an intermediate reset position in which all contacts are isolated.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Process control systems, instrumentation, communications systems, rail vehicles

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Current rating (A)	Internal resistance (Ω)		Current rating (A)	Internal resistance (Ω)	
	3600	3900		3600	3900
0.05	447	211	3	0.19	0.054
0.1	131	48	4	0.090	0.035
0.2	40	12.4	5	0.061	0.025
0.3	19.3	5.4	6	0.041	≤ 0.02
0.4	10.4	3.1	7	0.034	≤ 0.02
0.5	7.1	2.0	8	≤ 0.02	≤ 0.02
0.6	4.3	1.32	10	≤ 0.02	≤ 0.02
0.8	2.5	0.76	12	≤ 0.02	
1	1.67	0.49	14	≤ 0.02	
1.5	0.61	0.21	15	≤ 0.02	
2	0.38	0.101	16	≤ 0.02	
2.5	0.24	0.078			

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC 240 V, $50 / 60 \mathrm{~Hz}$; DC 65 V (UL: AC 250 V; DC 65 V)
Current rating range	$\begin{aligned} & \text { 3600: } 0.05 \ldots 16 \mathrm{~A} \\ & \text { 3900: } 0.05 \ldots 10 \mathrm{~A} \end{aligned}$
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
Typical life	5,000 operations at $1 \times I_{N}$, inductive 5,000 operations at $2 \times I_{N}$, resistive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area main/aux. circuit aux. circuit 4-5/6-7	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC 840 V
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V)
Interrupting capacity I_{cn}	3600 3900 $0.05 \ldots 0.8 \mathrm{~A}$ $0.05 \ldots .2 \mathrm{~A}$ self-limiting $1 \ldots 2 \mathrm{~A}$ $0.3 \ldots 2 \mathrm{~A}$ 200 A $2.5 \ldots .16 \mathrm{~A}$ $2.5 \ldots 10 \mathrm{~A}$ 400 A
Interrupting capacity (UL 1077) type 3600:	I_{N} U_{N} $0.05 \ldots . .16 \mathrm{~A}$ AC 250 V $1,000 \mathrm{~A}$ $0.05 \ldots 16 \mathrm{~A}$ DC 80 V $1,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	25 g (11 ms) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 45 g

Approvals

Authority	Voltage ratings	Current ratings
$\mathbf{3 6 0 0}:$		
VDE (EN 60934)	AC 240 V; DC 65 V	$0.05 \ldots 16 \mathrm{~A}$
CSA/UL	AC 250 V; DC 80 V	$0.05 \ldots 16 \mathrm{~A}$
UL	DC 65 V	$0.05 \ldots .25 \mathrm{~A}$
$3900:$		
VDE (EN 60934)	AC 240 V ; DC 65 V	$0.05 \ldots . .10 \mathrm{~A}$

Dimensions

-Si3-R -Si60 -ZR-Si60

Intermediate position: Holding down reset button and actuating manual release simultaneously.

Installation drawing

Internal connection diagrams

Switching position with auxiliary contacts and reset button (-Si3-R)

Switching position with special auxiliary contact (-Si60, -ZR-Si60)

Switching position with intermediate position and auxiliary contacts (3600: -ZR-Si, 3900: -Si)

Terminal design -P10

EEE-A゚ Thermal-Magnetic Circuit Breakers 3600/3900

Typical time/current characteristics

Module 17plus

Modular power distribution system for circuit breakers 2210-S, 3600 or 3900.
For technical details see product group 7.

Power-D-Box with sockets
accommodating up to $30 \mathrm{E}-\mathrm{T}-\mathrm{A}$ thermal-magnetic circuit breakers type 3600-P10-Si or 3900-P10-Si.
For technical data see product group 7.

Power-D-Box with sockets pre-wired 19BGT2 2U

for 18, 24 or 30 circuits
For technical data see product group 7 .

Sockets

17-P10-Si
(up to 16 A max. load)

17-P10-Si-20025
mounted with adapter
Retaining clip Y 30058111 to special order.

Sockets

17-P70-Si
(up to 16 A max. load) $\begin{aligned} & \text { 17-P70-Si-20025 } \\ & \text { mounted with adapter }\end{aligned}$
Retaining clip Y 30058111 to special order.

Sockets

23-P10-Si

63-P10-Si

(up to 16 A max. load)
Retaining clip Y 30058103 to special order.

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Bus bar (10-way) (supplied as a complete package)
for socket 17 (for max. 100 A continuous load)
X 21115701 with terminal
X 21115702 without terminal
(more positions available on request)

Insulate sleeving for bus bar
Y 30382401

Connector bus links -P10

X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown up to 13 A max. load X 210588 02/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black up to 20 A max. load
X $21058803 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), red up to 20 A max. load
X $21058804 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), blue up to 20 A max. load

DIN 46247 connect tabs 6.3 (.250)
IN 46247 tinned brass,
insulated

Extraction tool
Y 30139802

Mounting clip
Y 30050402
(2 pcs needed per unit)

Installation drawing with mounting clips Y 30050402

Description

Single, double and three pole thermal-magnetic circuit breakers with high rupture capacity to UL 489 (5 kA), EN/IEC 60934 (6kA) and UL 1077 (5 kA). With toggle actuation, positively trip-free mechanism, a choice of characteristic curves and a wide range of current ratings in finely graded steps from 0.1 A through 32 A . Auxiliary contacts (make or break contacts) are optionally available. Track-mountable design, width only 12.5 mm . Ease of wiring by means of an integral busbar concept: line entry busbar LINE+ and signal busbars/signal jumpers.

Typical applications

Protection of power supplies, equipment and cables in centralised control systems and in decentralised installations serving automation, petro-chemical, power plant, steel industry and similar industrial applications.

Ordering Information

4220-T...
single pole
three pole

Technical data

For further details please see catalogue section: Technical Information

Voltage rating	3 AC 415 V; 3 AC 480 V; AC 277 V; AC 240 V ; AC 120 V ; DC 60 V
Current rating range	0.1.. 32 A
Auxiliary circuit	DC 10-30 V, 10-500 mA
Typical life IEC 60934 3 AC 415 V AC 240 V : DC $60 \mathrm{~V}:$ UL 489 AC 120 V: UL 1077 3 AC 415 V AC 277 V : DC $60 \mathrm{~V}:$	1,000 cycles at $1 \times I_{N}$, inductive load 6,000 cycles at $1 \times I_{N}$, inductive load 6,000 cycles at $1 \times I_{N}$, resistive load 6,000 cycles at $1 \times I_{N}$, inductive load 3,000 cycles at $1 \times I_{N}$, inductive load 6,000 cycles at $1 \times I_{N}$, inductive load 6,000 cycles at $1 \times I_{N}$, resistive load
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}, \mathrm{T} 60\right)$
Storage temperature	$-40 \ldots 60^{\circ} \mathrm{C}\left(-40 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination	IEC 60664 2,5 kV / 2 re-inforced insulation in the operating area
Dielectric strength operating area pole to pole main circuit to auxiliary circuit open main circuit open auxiliary circuit	IEC 60934 test voltage AC $3,000 \mathrm{~V}$ (reinforced insulation) test voltage AC $1,500 \mathrm{~V}$ test voltage AC $1,500 \mathrm{~V}$ test voltage AC $1,500 \mathrm{~V}$ test voltage AC 250 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V}$)
Interrupting capacity $I_{n c}$ PC1 IEC 60934	AC $240 \mathrm{~V}, 6,000 \mathrm{~A}$ DC 60 V, 6,000 A
Interrupting capacity UL 489	AC $120 \mathrm{~V}, 5,000 \mathrm{~A}$
Interrupting capacity UL 1077	$\begin{aligned} & \text { AC } 277 \mathrm{~V}, 5,000 \mathrm{~A} \\ & \text { DC } 60 \mathrm{~V}, 5,000 \mathrm{~A} \end{aligned}$
Protection class (IEC 60529)	operating area IP30 terminal area IPOO
Vibration (sinusoidal)	$\pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}), 5 \mathrm{~g}(57-500 \mathrm{~Hz})$ test to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { test to IEC 60068-2-27, test Ea } \end{aligned}$
Corrosion	96 hrs in 5% salt mist, test to IEC 60068-2-11,test Ka
Humidity	240 hrs in $95 \% \mathrm{RH}$, to IEC 60068-2-78, test Cab
Housing material	moulded material
Mounting	on symmetrical rail to EN 50022-35x7.5
Mounting dimension ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$12.5 \times 89.3 \times 87.1$

Technical data

LINE terminal (LINE and/or DC+)	
screw terminals	M5
max. cable cross section	
flexible with wire end ferrule w/wo plastic sleeve	1-16 mm²
multi-lead connection (2 identical cables)	
flexible with wire end ferrule without plastic sleeve	$1-6 \mathrm{~mm}^{2}$
flexible with TWIN wire end ferrule with plastic sleeve	0.75-10 mm
wire stripping length	14 mm
tightening torque	$2.5-3 \mathrm{Nm}$
LOAD terminal	
screw terminals	M4
max. cable cross section	
flexible with wire end ferrule w/wo plastic sleeve	$0.5-10 \mathrm{~mm}$
multi-lead connection	
(2 identical cables)	
flexible with wire end ferrule without plastic sleeve	0.5-2.5 mm²
flexible with TWIN wire end ferrule with plastic sleeve	$0.5-6 \mathrm{~mm}^{2}$
wire stripping length	10 mm
tightening torque	$1.2-1.4 \mathrm{Nm}$
Auxiliary contact terminals	
screw terminals	M2
max. cable cross section	
flexible with wire end ferrule w/wo plastic sleev	$0.25-0.75 \mathrm{~mm}^{2}$
multi-lead connection (2 identical cables)	
flexible with wire end ferrule without plastic sleeve	$0.25-0.34 \mathrm{~mm}^{2}$
wire stripping length	6 mm
tightening torque	$0.22-0.25 \mathrm{Nm}$
Mass approx. 90 g per pole	approx. 90 g per pole with aux. contact

Current ratings and typical internal resistance values

Current rating (A)	Internal resistance per pole (Ω)			
	trip curve F1 fast DC only	trip curve F2 fast $A C+D C$	trip curve M1 medium delay $A C+D C$	trip curve \mathbf{T} long delay $A C+D C$
0.1	166	148	122	104
0.2	45	41	34	29
0.3	19	17	14	12
0.4	12	11	7.9	7.3
0.5	6.8	5.6	4.7	4.2
0.6	4.9	4.5	3.7	3.4
0.8	2,9	2.7	2.1	1.7
1	1.8	1.6	1.3	1.1
1.5	0.93	0.76	0.62	0.58
2	0.47	0.40	0.34	0.31
2.5	0.30	0.27	0.23	0.21
3	0.22	0.20	0.17	0.15
3,5	0.17	0.16	0.13	0.12
4	0.11	0.11	0.084	0.077
5	0.086	0.082	0.066	0.062
6	0.064	0.062	0.053	0.049
8	0.029	0.026	≤ 0.02	≤ 0.02
10	≤ 0.022	≤ 0.02	≤ 0.02	≤ 0.02
12	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
15	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
16	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
18	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
20	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
25	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02
32	≤ 0.02	≤ 0.02	≤ 0.02	≤ 0.02

Dimensions

Installation drawing

allowable mounting position:
vertical

Internal connection diagrams

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

屋E- Thermal-Magnetic Circuit Breaker 4220-T...

Termination examples

4220-T with busbars and signal busbars
 (auxiliary contacts connected in parallel)

4220-T with busbars and jumpers (auxiliary contacts connected in parallel)

4220-T with busbars and signal busbars (auxiliary contacts connected in serie)

Busbars, signal busbars and jumpers: see accessories

Accessories

Typical time/current characteristics

| Ambient temperature ${ }^{\circ} \mathrm{F}$ | \|-22| | -4 | +14 | +32 | +50 | +73.4 | +86 | +104 | +122 | +140 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ | -30 | -20 | -10 | 0 | +10 | +23 | +30 | +40 | +50 | +60 |
| Derating factor | 0,76 | 0,79 | 0,83 | 0,88 | 0,93 | | 1,04 | 1,12 | 1,22 | 1,35 |

Magnetic tripping currents are increased by 30 \% on DC supplies.
When several devices are mounted together, an air gap between each is recommended. If this is not possible, each device should carry only 80% of its rating.

Approvals		
Test authority	Voltage ratings	Current ratings
UL 489	AC 120 V	$0.1 \ldots 32 \mathrm{~A}$
VDE IEC 60934	AC $240 \mathrm{~V} ; \mathrm{DC} 60 \mathrm{~V}$	$0.1 \ldots .32 \mathrm{~A}$
UL 1077	AC $277 \mathrm{~V} ;$ DC 60 V	$0.1 \ldots 32 \mathrm{~A}$

Description

Single pole miniaturised magnetic circuit breakers with unique highspeed operating mechanism and push/pull on/off manual actuation. Fitted with electrically separate excitation and switching circuits, and one pair of auxiliary contacts which close when the main circuit is open. Also suitable for impulse operation. Designed for printed circuit board mounting. Low temperature sensitivity.

Typical applications

Printed circuit boards and components, safety and control systems.

Ordering information

Type No.	
808	fast-acting
	Manual release
	01 press-to-reset button, blue
	B manual release facility, blue (Standard)
	Current ratings
	0.01... 5 A
808	B - 5 A ordering example

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.01	625	0.8	0.096
0.02	170	0.9	0.085
0.03	77	1	0.073
0.04	47	1.2	0.050
0.05	29.2	1.5	0.031
0.08	10.3	2	≤ 0.02
0.1	5.6	2.5	≤ 0.02
0.2	1.65	3	≤ 0.02
0.3	0.89	3.25	≤ 0.02
0.4	0.39	4	≤ 0.02
0.5	0.28	4.5	≤ 0.02
0.6	0.198	5	≤ 0.02
0.7	0.143		

Approvals

Authority	Voltage ratings	Current ratings
CSA	AC 120 V ; DC 60 V	$0.01 \ldots . .5 \mathrm{~A}$
UL	DC 60 V	$0.01 \ldots 5 \mathrm{~A}$
	AC 120 V	$0.01 \ldots 5 \mathrm{~A}$

Technical data	
Voltage rating	DC 24 V (higher voltages to special order) UL: AC 120 V ; DC 60 V
Current ratings	0.01... 5 A (higher current ratings to special order)
Max. continuous load excitation circuit (2-3)	$2.65 \times 1{ }_{N}$
Max. continuous load switching circuit 6-7 auxiliary circuit 4-5	5 A
Typical life	6,000 operations at 5 A for switching circuit
Ambient temperature	$-30 \ldots+70^{\circ} \mathrm{C}\left(-22 \ldots+158^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664-1)	rated impulse pollution withstand voltage degree 1.5 kV 2
Dielectric strength (UL 1077) operating area excitation to switching circuit excitation to auxiliary circuit	test voltage AC $1,240 \mathrm{~V}$ AC $1,240 \mathrm{~V}$ AC $1,240 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity $(0-0-0)$	100 A
Interrupting capacity (UL 1077)	$\text { 2,000 A AC } 120 \text { V }$ $\text { 1,000 A DC } 60 \text { V }$
Degree of protection (IEC 60529/DIN 40050)	operating area IP30 terminal area IPOO
Vibration	$3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz})$, to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27, \text { test Ea } \end{aligned}$
Corrosion	48 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 10 g

Dimensions

808-01

808-B

Internal connection diagram

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

[^16]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single, two and three pole magnetic circuit breakers with trip-free mechanism and push/pull on/off manual actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S- type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Convenient threadneck panel or plug-in mounting, and with a white push button indicator band showing clearly the tripped/off position. Available with auxiliary contacts ($1 \times \mathrm{N} / \mathrm{O}, 1 \times \mathrm{N} / \mathrm{C}$) for status signalling and fitted with an unprotected shunt tap terminal as standard. Approved to CBE standard EN 60934 (IEC 60934).

Typical application

Control equipment, communications systems, power semiconductors.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω) per pole		
	$\begin{aligned} & \text { curve } \\ & \text {-F4/F5 } \end{aligned}$	curves -E1/H1/R1	curves -E2/H2/R2
0.02	583	2441	2449
0.05	94	376	365
0.08	35.8	148	144
0.1	23	94	84
0.15	9.9	39	38
0.2	5	30.5	22.4
0.3	2.44	9.9	9.7
0.5	0.79	3.16	3.1
0.75	0.39	1.55	1.51
1	0.25	0.79	0.77
1.25	0.15	0.58	0.56
1.5	0.10	0.37	0.36
1.75	0.083	0.30	0.29
2	0.059	0.20	0.24
2.5	0.044	0.146	0.138
3	0.028	0.10	0.099
4	< 0.02	0.059	0.057
5	< 0.02	0.040	0.038
6	< 0.02	0.026	0.026
8	< 0.02	< 0.02	< 0.02
10	< 0.02	< 0.02	< 0.02
12	< 0.02	< 0.02	< 0.02
15	< 0.02	< 0.02	< 0.02
16	< 0.02	< 0.02	< 0.02
20	< 0.02	< 0.02	< 0.02
25	< 0.02 *	< 0.02	< 0.02
30	< 0.02*	< 0.02	< 0.02
40		< 0.02	
50		< 0.02	

* 50 \% ON duty / 60 min.

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC 415 V ; AC 240 V ; DC 80 V	0.02... 30 A
	DC 80 V	0.02... 50 A 1-pole
UL 1077, CSA	DC 80 V	0.02... 50 A 1, 2-pole
	3 AC 250 V ; AC 250 V	0.02... 30 A 1,2,3-pole
UL 489 A	DC 80 V	0.05... 30 A 1, 2-pole
CCC	3 AC 415 V ; AC 240 V ; DC 80 V	0.02... 30 A
	DC 80 V	0.02... 50 A 1, 2-pole

Technical data

For further details please see chapter: Technical Information

Voltage rating	3 AC 415 V ; AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 80 V
Current ratings	$0.02 \ldots 50 \mathrm{~A}$ single pole (40+50 A DC only)
	$0.02 \ldots 30 \mathrm{~A}$ multipole
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V}$
	0.5 A, DC 80 V

Typical life
3 AC $415 \mathrm{~V}, \mathrm{AC} 240 \mathrm{~V}$:
0.02... $30 \mathrm{~A} \quad 6,000$ operations at $1 \times I_{N}$, inductive 10,000 operations at $1 \times I_{N}$, resistive
DC 80 V : $\quad 0.02 \ldots 25 \mathrm{~A} \quad 6,000$ operations at $1 \times \mathrm{I}_{\mathrm{N}}$, inductive
$0.02 \ldots 30 \mathrm{~A} \quad 10,000$ operations at $1 \mathrm{x} \mathrm{I}_{\mathrm{N}}$, resistive
$40+50 \mathrm{~A} \quad 5,000$ operations at $1 \times \mathrm{I}_{\mathrm{N}}$, resistive
Ambient temperature
$-40 \ldots+85{ }^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$

Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area		
Dielectric strength			
(IEC 60664 and 60664A)	test voltage		
operating area	AC 3,000 V		
pole to pole ($2+3$-pole)	AC 1,500 V		
main to auxiliary circuit	AC 1,500 V		
aux. circuit 11-12/23-24	AC 1,000 V		
switching to trip circuit (-X)	AC 1,500 V		
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$		
Interrupting capacity I_{cn}	1,200 A at AC; 2,000 A at DC		
Interrupting capacity	I_{N}	0.02... 20 A	25... 30 A
(UL 1077) AC:	1-pole	AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$	AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$
	2-pole	AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$	AC $250 \mathrm{~V} / 5,000 \mathrm{~A}$
	3 -pole	3AC 250V/3,500A	3AC250V/5,000A
DC:	1-pole	0.02... 50 A	DC $80 \mathrm{~V} / 3,500 \mathrm{~A}$
	2-pole	0.0	

Interrupting capacity
(UL 489A)
2,000 A

Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00

Vibration	
with button down:	$\begin{aligned} & 10 \mathrm{~g}(57-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { at } 0.9 \times \mathrm{I}_{\mathrm{N}} \end{aligned}$
other mounting planes:	$\begin{aligned} & 10 \mathrm{~g}(57-2000 \mathrm{~Hz}) \text { at } \mathrm{I}_{\mathrm{N}} \\ & \text { to IEC 60068-2-6, test Fc } \end{aligned}$
	10 frequency cycles/axis
Shock	$100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \times \mathrm{I}_{\mathrm{N}}$, directions $1,2,3,4,5$ $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$, direction 6 to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 70 g per pole

Ordering information

Dimensions (1-pole)

Cut-out dimensions:

2-pole

panel thickness
max. 3 mm (. 118 in .)

Terminal design

Installation drawings

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Auxiliary contact terminal design

Internal connection diagrams

Typical time/current characteristics

Curve F4 for DC, magnetic (undelayed)

($\mathrm{I}_{\mathrm{N}}>20 \mathrm{~A}, 50 \%$ ON period, 60 min .) at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Short delay curves E1 for DC and E2 for AC $50 / 60 \mathrm{~Hz}$, hydraulic-magnetic

Long delay curves R1 for DC and R2 for AC $50 / 60 \mathrm{~Hz}$, hydraulic-magnetic

Curve F5 for AC $50 / 60 \mathrm{~Hz}$, magnetic (undelayed)
($\mathrm{I}_{\mathrm{N}}>20 \mathrm{~A}, 50 \%$ ON period, 60 min .) at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Medium delay curves H1 for DC and H2 for AC $50 / 60 \mathrm{~Hz}$, hydraulic-magnetic

N.B. Curves E1, E2, H1, H2, R1 and R2 will only be maintained if the escutcheon is mounted on a vertical surface.

Other curves upon request (e. g. impulse delay).

Accessories

Bus bar (10-way) (supplied as a complete package)
for type 18 socket
(for max. 100 A continuous load),
more positions available on request
X 21115801 with terminal
X 21115802 without terminal

Insulated sleeving for bus bars

Y 30382411

Retaining clip for socket 18-P10-Si
Y 30057911

Connector bus link -P10
X 210588 01/1.5 mm 2 (AWG 16), brown (up to 13 A max. load)
X 210588 02/2.5 mm² (AWG 14), black (up to 20 A max. load)
X $21058803 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load)
X 210588 04/2.5 mm² (AWG 14), blue (up to 20 A max. load)

Accessories for push button
Splash cover with hex nut and O ring (IP66 and IP67)
X 20080108 (nickel plated hex nut M12x1,
splash cover transparent)
X 20080103 (black finish hex nut M12x1,
splash cover black)

Splash seal, black, hex nut and O ring (IP54)
X 20080201 (nickel plated hex nut M12x1, splash seal black)

Actuator extension
X 20080301 (black button)

Shock directions / Mounting attitudes

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single and two pole magnetic circuit breakers with trip-free mechanism and push/pull on/off manual actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S-type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Convenient threadneck panel or plug-in mounting, and with a white push button indicator band showing clearly the tripped/off position Available with auxiliary contacts ($1 \times \mathrm{N} / \mathrm{O}, 1 \times \mathrm{N} / \mathrm{C}$) for status signalling and fitted with an unprotected shunt tap terminal as standard.
Reliable tripping with even the smallest overcurrents.
Approved to CBE standard EN 60934 (IEC 60934).

Typical application

Railway vehicles, telecommunications, process control.

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω) per pole curve -F4 curves -E1/H1/R1
0.02	5832441
0.05	94 376
0.08	34 148
0.1	23 94
0.15	25.1
0.2	14.6
0.3	6.32 9.9
0.5	0.79 3.16
0.75	0.39 1.55
1	0.25 0.79
1.5	0.27 0.37
2	0.059 0.20
2.5	0.044
3	0.028 0.10
4	0.040 .059
5	< 0.020 .040
6	<0.02 0.026
8	$<0.02<0.02$
10	$<0.02<0.02$
12	$<0.02<0.02$
15	$<0.02<0.02$
16	$<0.02<0.02$
20	$<0.02<0.02$
25	$<0.02^{*}<0.02$
30	$<0.02^{*}<0.02$
40	<0.02
50	< 0.02

For further details please see chapter: Technical Information	
Voltage rating	DC $110 \mathrm{~V} \pm 25 \%$
Current ratings	$0.02 \ldots 50 \mathrm{~A}$ single pole
	$0.02 \ldots 30 \mathrm{~A} 2$-pole
Auxiliary circuit	AC $240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V} 1 \mathrm{~A}$
	DC $110 \mathrm{~V} \pm 25 \% 0,3 \mathrm{~A}$

Typical life	
DC $110 \mathrm{~V}: \quad 0.02 \ldots 35 \mathrm{~A}$	10,000 operations at $1 \times$
$40+50 \mathrm{~A}$	3,000 operations at $1 \times I_{N}$
0.02... 30 A	5,000 operations at $2 \times I_{N}$
Ambient temperature	$-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution
	withstand voltage degree
	2.5 kV 2
	reinforced insulation in operating area
Dielectric strength	
(IEC 60664 and 60664A)	test voltage
operating area	AC 3,000 V
pole to pole (2-pole)	AC $1,500 \mathrm{~V}$
main to auxiliary circuit	AC 1,500 V
aux. circuit 11-12/23-24	AC 1,000 V
switching to	
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	1,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	
with button down:	at $0.9 \times \mathrm{I}_{\mathrm{N}}$
other mounting planes:	$10 \mathrm{~g}(57-2000 \mathrm{~Hz})$ at I_{N}
	to IEC 60068-2-6, test Fc
	10 frequency cycles/axis
Shock	$100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \times \mathrm{I}_{\mathrm{N}}$, directions $1,2,3,4,5$ $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$, direction 6 to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 70 g per pole

Ordering information

Type No.
8340 Magnetic push/pull circuit breaker
Mounting
G threadneck panel mounting
Threadneck design
2 M12x1
Number of poles (main current paths)
1 single pole, protected
2 two pole, protected
5 two pole, protected on one pole only
Panel hardware
0 without panel hardware
1 with hex nut M12x1 and washer 12/15
Terminal design
P1 blade terminals A6.3-0.8 mm (QC.250)
K3 screw terminals M4 recommended for $I_{N}>20 \mathrm{~A}$
K4 screw terminals M5 recommended for $I_{N}>40 \mathrm{~A}$
R1 round connectors $\varnothing 6$
X1 blade terminals A6.3-0.8 mm (QC.250),
separate switching and trip circuit
Characteristic curve
F4 instantaneous trip: magn. $1.5-2.2 \times \mathrm{I}_{\mathrm{N}}$
E1 short delay: magn.-hydr. $1.01-1.4 \times I_{N}$
H1 medium delay: magn.-hydr.1.01-1.4 $\times \mathrm{I}_{\mathrm{N}}$
R1 long delay: magn.-hydr. 1.01-1.5 $\times I_{N}$
Actuator colour
A black with white trip indicator band
Actuator marking
4 rated current
(legible with location pin above) standard
7 rated current
(legible with location pin below)
Auxiliary contacts
H0 without auxiliary contacts
H1 with auxiliary contacts
H2 with auxiliary contacts
on pole 1 only (2-and 3-pole types)
Auxiliary contact function
1 one each N/O and N/C
21 pair N/O (23/24)
31 pair N/C (11/12)
Auxiliary contact terminal design
1 blade terminals A6.3-0.8 mm
Voltage rating
D DC 110 V
E DC $110 \mathrm{~V}+$ higher
flammability rating
Current ratings
$0.02 \ldots . .50 \mathrm{~A}$

| $8340-G$ | 1 | $1-\mathrm{P} 1$ | $\mathrm{H} 1-\mathrm{A}$ | 4 | H 111 | 1 | - 8 A ordering example |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Dimensions (1-pole)

Terminal design

Installation drawings

Auxiliary contact terminal design

1 N/O, 1 N/C

1 N/O

1 N/C

Internal connection diagrams

Typical time/current characteristics

Medium delay curve H1, hydraulic-magnetic

Short delay curve E1, hydraulic-magnetic

Long delay curve R1, hydraulic-magnetic

N.B. Curves E1, H1 and R1 will only be maintained if the escutcheon is mounted on a vertical surface.

Other curves upon request (e.g. impulse delay).

Accessories

Bus bar (10-way) (supplied as a complete package)
for type 18 socket
(for max. 100 A continuous load),
more positions available on request
X 21115801 with terminal
X 21115802 without terminal

Insulated sleeving for bus bars
Y 30382411

Retaining clip for socket 18-P10-Si
Y 30057911

Connector bus link -P10
$\times 21058801 / 1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load)
X 210588 02/2.5 mm ${ }^{2}$ (AWG 14), black (up to 20 A max. load)
X 210588 03/2.5 mm² (AWG 14), red (up to 20 A max. load)
X 210588 04/2.5 mm² (AWG 14), blue (up to 20 A max. load)

Accessories for push button
Splash cover with hex nut and 0 ring (IP66 and IP67)
X 20080108 (nickel plated hex nut M12x1,
splash cover transparent)
X 20080103 (black finish hex nut M12x1,
splash cover black)

Splash seal, black, hex nut and O ring (IP54)
X 20080201 (nickel plated hex nut M12x1, splash seal black)

Actuator extension
X 20080301 (black button)

Shock directions / Mounting attitudes

[^17]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single and multipole magnetic circuit breakers with trip-free mechanism and toggle actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S-type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Industry standard dimensions and panel mounting. Options include auxiliary changeover contacts, or relay trip function. Low temperature sensitivity at rated load Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Control equipment, communications systems, transportation, power supplies.

Standard current ratings and typical internal resistance values

Current rating (A)	Furves and internal resistance per pole (Ω)			
0.02	1493	953	2669	2457
0.05	276	152	452	376
0.1	58	37	100	94
0.25	8.2	6.0	15.5	14.7
0.5	2.3	1.47	3.9	3.2
0.75	0.98	0.63	1.65	1.56
1	0.58	0.35	0.95	0.90
2	0.145	0.096	0.26	0.20
2.5	0.096	0.061	0.15	0.15
3	0.065	0.048	0.10	0.10
5	0.025	<0.02	0.042	0.040
6	<0.02	<0.02	0.029	0.028
8	<0.02	<0.02	<0.02	<0.02
10	<0.02	<0.02	<0.02	<0.02
12	<0.02	<0.02	<0.02	<0.02
15	<0.02	<0.02	<0.02	<0.02
16	<0.02	<0.02	<0.02	<0.02
20	<0.02	<0.02	<0.02	<0.02
25	<0.02	<0.02	<0.02	<0.02
30	<0.02	<0.02	<0.02	<0.02
40	≤ 0.01	-	≤ 0.01	-
50	≤ 0.01	-	≤ 0.01	-

Corrosion	96 hours at 5% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95% RH
	to IEC $60068-2-78$, test Cab
Mass	approx. 65 g per pole

8340-F...
1-pole

2-pole

Technical data

For further de	ee chapter: Technical Information
Voltage rating	3 AC 415 V ; AC $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$; DC 80 V (higher DC ratings to special order)
Current ratings	$0.02 \ldots . .50$ A 1-pole ($40+50$ A DC only) $0.02 . . .30 \mathrm{~A}$ multipole
Auxiliary circuit	6 A, AC 240 V 3 A, DC 28 V 1 A, DC 65 V 0.5 A, DC 80 V

Ordering information

Type No.
8340 magnetic circuit breaker with toggle actuator Mounting
F flange mounting

Configuration	
1	with mounting nuts 6
4	with mounting nuts
9	snap-in frame

snap-in frame
Number of poles
0 single pole, switch only
1 single pole protected
2 two pole protected 3 three pole protected 4 four pole protected magnetic 5 two pole, protected on one pole only 6 four pole, protected on poles 1, 2 and 3 only 7 two pole, switch only

Panel hardware
0 without panel hardware
Terminal design (main contact)
K3 screw terminals with metric thread, M4 (recommended for $I_{N} \geq 20 \mathrm{~A}$)
K4 screw terminals with metric thread, M5 ($\left.\mathrm{I}_{\mathrm{N}}=40 \mathrm{~A}\right)$
P1 blade terminals
X1 blade terminals with separate switching and relay circuit
Characteristic curves
Characteristic curve F, instantaneous trip:
F1 DC \quad trip at $1.01-1.5 \times \mathrm{I}_{\mathrm{N}}$ F2 $\quad \mathrm{AC} 60 / 50 \mathrm{~Hz}$ trip at $1.01-1.5 \times \mathrm{I}_{\mathrm{N}}$ haracteristic curve K, short delay: K1 DC trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 0.16-1.2 \mathrm{~s}$ K2 AC 60/50Hz trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 0.13-1.6 \mathrm{~s}$
Characteristic curve M, medium delay:
M1 DC \quad trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 0.6-7.5 \mathrm{~s}$
M2 AC $60 / 50 \mathrm{~Hz}$ trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 2.2-20 \mathrm{~s}$
Without characteristic curve:
Q0 switch only
Characteristic curve T, long delay:
T1 DC trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 10-70 \mathrm{~s}$ T2 AC $60 / 50 \mathrm{~Hz}$ trip time at $2 \times \mathrm{I}_{\mathrm{N}}: 15-150 \mathrm{~s}$ Relay trip X :
X1 voltage trip at DC, instantaneous trip X2 voltage trip at AC, instantaneous trip Other curves to special order (e.g. pulse delayed, high inrush currents, capacitive loads)

Actuator colour / design
A black, long toggle
B white, long toggle
C blue, long toggle
K black, short toggle
L white, short toggle
M blue, short toggle
Z black, without toggle, with slot other colours to special order

Marking on actuator
0 without marking
L I-O; ON-OFF
N I-O; ON-OFF (I_{N} on housing top)
Auxiliary contacts
H0 without auxiliary contacts
H1 with auxiliary contacts, gold-flushed
H2 auxiliary contacts, gold-flushed
on one pole only (multipole)
H3 auxiliary contacts, gold-flushed
on poles 1 and 3 (3 and 4-pole)
Auxiliary contact function
41 change over contact
Auxiliary contact
terminal design
2 blade terminal 2.8-0.5 mm
Current ratings
$0.02 \ldots 50 \mathrm{~A}$
8340-F 1 1 0-P1 M1-A L H1 4 2-30 A

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	3 AC 415 V ; AC 240 V ; DC 80 V DC 80 V	$0.02 \ldots 30$ A 1 to 6 -pole $0.02 . .50$ A 1-pole
UL 1077, CSA	$\begin{aligned} & \text { DC } 80 \mathrm{~V} \\ & 3 \text { AC } 250 \mathrm{~V} ; \mathrm{AC} 250 \mathrm{~V} \end{aligned}$	$0.02 \ldots 50$ A 1 to 6 -pole $0.02 \ldots 30$ A 1 to 6 -pole
UL 489 A	DC 80 V	0.05...30 A 1, 2-pole
QPL (Sweden)	AC 240 V ; DC 50 V	1...30 A
CCC	3 AC 415 V ; AC 240 V DC 80 V	$\begin{aligned} & 0.02 \ldots 30 \text { A } \\ & 0.02 \ldots . .50 \text { A 1, 2-pole } \end{aligned}$

Internal connection diagrams

with separate switching and relay circuit

multipole

unit 2
unit 3
unit 4

Flange mounting

Configuration: F1/F4
Actuator: long toggle

Actuator: short toggle

Actuator: without toggle, with slot

Applicable for nominal dimensions without direct tolerance indication DIN ISO $286 \pm$ IT13
number of poles: 1-4

Configuration: F9

Actuator: long toggle

Actuator: short toggle

Actuator: without toggle, with slot

number of poles: 1-4

Cut-out dimensions
max. panel thickness: $2 \pm 0,5 \mathrm{~mm}$

Applicable for nominal dimensions without direct tolerance indication: DIN ISO $286 \pm$ IT13

Terminal design / Dimensions

K 3/4 screw terminals
tightening torque max. 1.2 Nm

K3 screw terminals M4 K4 screw terminals M5

P1 blade terminals

X1 blade terminals
with separate switching and relay circuit

blade terminals DIN 46244-A6,3-0,8

Auxiliary contacts

version H (standard, asymmetrical gold-flushed terminals, silver contacts

Actuator configuration

Actuator design

number of poles: 1-4
Configuration: F1 / F4
Actuator long

Actuator short

number of poles: 1-4
Configuration: F9
Actuator long

number of poles: 1
Configuration: F1 / F4 / F9
Actuator: Z (black, without toggle, with slot)

Installation drawing

Typical time/current characteristics at $23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Curve F1 (instantaneous) for DC

Curve F2 (instantaneous) for AC $50 / 60 \mathrm{~Hz}$

Curve K1 (short delay) for DC

Curve K2 (short delay) for AC $50 / 60 \mathrm{~Hz}$

Curve M0 (medium delay) for AC/DC

Curve M1 (medium delay) for DC

Curve M2 (medium delay) for AC $50 / 60 \mathrm{~Hz}$

N.B. All curves will only be maintained if the escutcheon is mounted on a vertical surface.

Other characteristic curves to special order (e. g. with impulse delay for inrush peaks).

Typical time/current characteristics at $23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Curve T1 (long delay) for DC

Curve T2 (long delay) for AC $50 / 60 \mathrm{~Hz}$

N.B. All curves will only be maintained if the escutcheon is mounted on a vertical surface.
Other characteristic curves to special order (e. g. with impulse delay for inrush peaks).

Shock directions / Mounting attitudes

Accessories

Splash cover with mounting plate and screws

Toggle guard
Y 30725001

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single, two, three and four pole magnetic and hydraulic-magnetic circuit breakers with trip-free mechanism and toggle actuation. A choice of fast magnetic only or hydraulically delayed switching characteristics (S-type MO or HM CBE to EN 60934) ensures suitability for a wide range of applications. Featuring a combi-foot design for symmetric and asymmetric rail mounting. Low temperature sensitivity at rated load.
Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Power supplies, control equipment, communication systems, EDP systems.

Standard current ratings and typical internal resistance values

Current rating (A)	Curves and internal resistance per pole (Ω)			
F1	F2	K1, M1, T1,	K2, M2, T2	
0.02	1493	953	2669	2457
0.05	276	152	452	376
0.1	58	37	100	94
0.25	8.2	6.0	15.5	14.7
0.5	2.3	1.47	3.9	3.2
0.75	0.98	0.63	1.65	1.56
1	0.58	0.35	0.95	0.90
2	0.145	0.096	0.26	0.20
2.5	0.096	0.061	0.15	0.15
3	0.065	0.048	0.10	0.10
5	0.025	<0.02	0.042	0.040
6	<0.02	<0.02	0.029	0.028
8	<0.02	<0.02	<0.02	<0.02
10	<0.02	<0.02	<0.02	<0.02
12	<0.02	<0.02	<0.02	<0.02
15	<0.02	<0.02	<0.02	<0.02
16	<0.02	<0.02	<0.02	<0.02
20	<0.02	<0.02	<0.02	<0.02
25	<0.02	<0.02	<0.02	<0.02
30	<0.02	<0.02	<0.02	<0.02
40	≤ 0.01	-	≤ 0.01	-
50	≤ 0.01	-	≤ 0.01	-

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} \text {; AC } 240 \mathrm{~V} ; \mathrm{DC} 80 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	0.02... 30 A 1 to 6-pole $0.02 \ldots 50$ A 1-pole
UL1077, CSA	$\begin{aligned} & \text { DC } 80 \mathrm{~V} \\ & 3 \text { AC } 250 \mathrm{~V} \text {; AC } 250 \mathrm{~V} \end{aligned}$	0.02... 50 A 1 to 6-pole 0.02... 30 A 1 to 6-pole
UL 489 A	DC 80 V	0.05...30 A 1, 2-pole
CCC	$\begin{aligned} & 3 \text { AC } 415 \mathrm{~V} \text {; AC } 240 \mathrm{~V} \\ & \text { DC } 80 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \ldots 30 \mathrm{~A} \\ & 0.02 \ldots . .50 \mathrm{~A} \quad 1,2 \text {-pole } \end{aligned}$

Humidity	240 hours at 95% RH, to IEC 60068-2-78, test Cab
Mass	approx. 98 g per pole

8340-T...
single pole
three pole

Technical data

For further details please see chapter: Technical Information

Voltage rating	$3 \mathrm{AC} \mathrm{415V}$; AC $240 \mathrm{~V}(50 / 60 \mathrm{~Hz}) ;$ DC 80V (higher DC voltages to special order)
Current rating range	$0.02 \ldots 50 \mathrm{~A}$ single pole (40 + 50 A DC only)
	$0.02 \ldots 30 \mathrm{~A}$ multipole
Auxiliary circuit	1 A, AC $240 \mathrm{~V} / \mathrm{DC} 65 \mathrm{~V} ; 0.5 \mathrm{~A} \mathrm{DC} 80 \mathrm{~V}$

Typical life
3 AC 415 V AC 240 V :
$0.02 \ldots 30$ A 6,000 operations at $1 \times I_{N}$, inductive 10,000 operations at $1 \times I_{N}$, resistive
DC 80 V : $\quad 0.02 \ldots 25 \mathrm{~A} 6,000$ operations at $1 \times \mathrm{I}_{\mathrm{N}}$, inductive $0.02 \ldots 30 \mathrm{~A} 10,000$ operations at $1 \times \mathrm{I}_{\mathrm{N}}$, resistive $40+50$ A 6,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$, resistive

Ambient temperature	$-40 \ldots+85{ }^{\circ} \mathrm{C}\left(-40 \ldots+185{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage \quad degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area pole to pole main to aux. circuit	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$\begin{aligned} & 1,200 \mathrm{~A} \text { at } \mathrm{AC} \\ & 2,000 \mathrm{~A} \text { at } \mathrm{DC} \end{aligned}$
Interrupting capacity (UL 1077)	I_{N} $0.02 \ldots 20 \mathrm{~A}$ $25 \ldots 30 \mathrm{~A}$ 1-pole AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$ AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$ 2-pole AC $250 \mathrm{~V} / 3,500 \mathrm{~A}$ AC $250 \mathrm{~V} / 5,000 \mathrm{~A}$ 3-pole $3 A C 250 \mathrm{~V} / 3,500 \mathrm{~A}$ $3 \mathrm{AC} 250 \mathrm{~V} / 5,000 \mathrm{~A}$
DC:	1-pole $0.02 \ldots 50 \mathrm{~A}$ DC $80 \mathrm{~V} / 3,500 \mathrm{~A}$ 2-pole $0.02 \ldots 30 \mathrm{~A}$ DC $80 \mathrm{~V} / 3500 \mathrm{~A}$
Interrupting capacity (UL 489A)	2,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP20
Vibration with toggle down: directions 1, 2, 3, 4, 5 : with curves F1, F2:	$\begin{aligned} & 10 \mathrm{~g} \text { at } 0.9 \mathrm{I}_{\mathrm{N}} \\ & 10 \mathrm{~g} \text { at } 1 \times \mathrm{I}_{\mathrm{N}} \\ & 10 \mathrm{~g} \text { at } 0.8 \times \mathrm{I}_{\mathrm{N}} \text { in all planes. } \\ & (57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to } \mathrm{IEC} 60068-2-6 \text {, test } \mathrm{Fc} \\ & 10 \text { frequency cycles/axis } \end{aligned}$

Shock
directions 1, 2, 3, 4, 5: $\quad 100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \times \mathrm{I}_{\mathrm{N}}$
with curves F1, F2.
Corrosion
$100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$ $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$ to IEC 60068-2-27, test Ea
96 hours at 5 \% salt mist,
to IEC 60068-2-11, test Ka

Ordering information

Type No.
8340 circuit breaker with toggle actuator
Mounting

Configuration
 1 snap-on installation
 Number of poles

0 single pole, switch only
1 single pole protected 2 two pole protected three pole protected \qquad 4 four pole protected 5 two pole, protected on one poly only 6 four pole, protected on poles 1, 2 and 3 only 7 two pole, switch only

Panel hardware
0 without panel hardware
Terminal design (main contact)
K1 recessed screw/pressure plates M4
Characteristic curve
Curve F, instantaneous trip:

F1	DC	trip at 1.01-1.5 $\times \mathrm{I}_{\mathrm{N}}$
F2	AC 60/50 Hz	trip at $1.01-1.5 \times \mathrm{I}_{\mathrm{N}}$
Curve K, short delay:		
K1	DC	trip at $2 \times \mathrm{I}_{\mathrm{N}} 0.16-1.2 \mathrm{~s}$
K2	AC $60 / 50 \mathrm{~Hz}$	trip at $2 \times \mathrm{I}_{\mathrm{N}} 0.13-1.6 \mathrm{~s}$
Curve M, medium delay:		
M1	DC	trip at $2 \times \mathrm{I}_{\mathrm{N}} 0.6-7.5 \mathrm{~s}$
M2	AC 60/50 Hz	trip at $2 \times \mathrm{I}_{\mathrm{N}} 2.2-20 \mathrm{~s}$
Without characteristic curve		
Q0	switch only	
Curve T, long delay:		
T1	DC	trip at $2 \times \mathrm{I}_{\mathrm{N}} 10-70 \mathrm{~s}$
T2	AC 60/50 Hz	trip at $2 \times \mathrm{I}_{\mathrm{N}} 15-150 \mathrm{~s}$

Other characteristic curves to special order
(e.g. pulse-delayed, high inrush currents, capacitive loads)

Actuator colour / desig
B white, long toggle
C blue, long toggle
K black, short toggle
L white, short toggle
M blue, short toggle
other colours to special order
Marking on actuator
0 without marking
L I-O; ON-OFF
M I-O; ON-OFF (I_{N}, U_{N}, trip curve,
schematic diagram on housing top)
N I-O; ON-OFF (I_{N}, on housing top)
Auxiliary contacts
H0 without auxiliary contacts
H1 with auxiliary contact
H2 with auxiliary contact
on one pole only (multipole)
Auxiliary contact function
(see internal connection diagrams)
21 N/O contact
$31 \mathrm{~N} / \mathrm{C}$ contact
Auxiliary contact terminal design
6 screw/pressure plate M3
Current ratings
$0.02 . . .50 \mathrm{~A}$
Approval (optional)
U UL 489 A
8340-T 1 1 0 - K1 M1-A L H1 2 6-10A-U ordering example

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Dimensions

Installation drawing

Internal connection diagrams

| 1-pole
 protected magnetically | multipole |
| :--- | :--- | :--- |
| line 1 | |

Shock directions

Typical time/current characteristics at $23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Curve T1 (long delay) for DC

Curve T2 (long delay) for AC $50 / 60 \mathrm{~Hz}$

N.B. All curves will only be maintained if the escutcheon is mounted on a vertical surface.
Other characteristic curves to special order (e. g. with impulse delay for inrush peaks).

Curve F1 (instantaneous) for DC

Curve F2 (instantaneous) for AC $50 / 60 \mathrm{~Hz}$

Curve K1 (short delay) for DC

Curve K2 (short delay) for AC $50 / 60 \mathrm{~Hz}$

Curve M0 (medium delay) for AC/DC

Curve M1 (medium delay) for DC

Curve M2 (medium delay) for AC $50 / 60 \mathrm{~Hz}$

N.B. All curves will only be maintained if the escutcheon is mounted on a vertical surface

Other characteristic curves to special order (e. g. with impulse delay for inrush peaks).

Connector bus links -K10

X210 589 01/2.5 mm², (AWG 14) (black) up to 20 A max. load X210 589 02/1.5 mm², (AWG 16) (brown) up to 13 A max. load

Busbar 1-pole

Y 30849501
The one metre long busbars can be cut to suitable lengths. Plug-on caps can be fitted on the ends to provide brush contact protection.
$I_{\max }$ - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$

Plug-on cap, 1-pole Y 30785101

Busbar 2-pole
Y 30849601
$I_{\text {max }}$ - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$

Plug-on cap, busbar 2/3-pole Y 30850601

Busbar 3-pole
Y 30849701
$I_{\text {max }}$ - busbar $100 \mathrm{~A}\left(40^{\circ} \mathrm{C}\right)$

Plug-on cap, busbar 2/3-pole Y 30850601

Supply terminal $I_{\max } 63 \mathrm{~A}$
Y 30850401
Max. tightening torque of terminal screw 2 Nm
Max. cable cross section: $25 \mathrm{~mm}^{2}$ / single strand
$16 \mathrm{~mm}^{2}$ / multistrand
with wire end ferrule

Caution:

When using multipole busbars please leave at least one pole's width between two adjacent line entry terminals.

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single or multipole hydraulic-magnetic circuit breakers with trip-freemechanism and toggle actuation. A choice of switching characteristics ensures suitability for a wide range of applications. Industry standard dimensions and panel mounting. Auxiliary contacts optional. Low temperature sensitivity at rated load.
Approved to CBE standard EN 60934 (IEC 60934) S-type HM CBE.

Typical applications

In the business fields Communication and Transport: power supplies, switchgear, instrumentation and process control engineering.

Standard current ratings and typical internal resistance values

Current rating (A)	Trip curves and internal resistance (Ω K1, M1, per pole						
K2, M2, T2			$	$	0.05	452	376
:---	:---	:---					
0.1	100	04					
1	0.95	0.90					
2	0.26	0.10					
3	0.10	0.040					
5	0.042	<0.02					
10	<0.02	<0.02					
15	<0.02	<0.02					
20	<0.02	<0.02					
25	<0.02	<0.02					
30	<0.02	<0.01					
40	<0.01	<0.01					
50	<0.01	<0.01					
60	<0.01	<0.01					
80	<0.01	<0.01					
100	<0.01	<0.01					
125	<0.01						

Interrupting capacity to EN 60934, UL 489 and UL 1077

IEC 60934 - test series E

voltage	number of poles	$\mathrm{I}_{\mathrm{N}} \operatorname{max.}(\mathrm{A})$	$\mathrm{I}_{\mathrm{cn}}(\mathrm{A})$
DC 80 V	$1+2$	$0.02 \ldots 125$	10,000
AC 240/415 V	$1-6$	$0.02 \ldots 80$	$6 \times \mathrm{I}_{\mathrm{N}}$
AC 240 V	1	$0.02 \ldots 20$	5,000

UL 489			
test sequence \mathbf{Z}			
voltage	number of poles	$\mathrm{I}_{\mathrm{N}} \operatorname{max.}(\mathrm{A})$	$\mathrm{I}_{\mathrm{cn}}(\mathrm{A})$
DC 80 V	$1+2$	$0.5 \ldots 125$	10,000
AC 120 V	1	$0.5 \ldots 80$	5,000
AC $120 / 240 \mathrm{~V}$	1	$0.5 \ldots 80$	5,000
AC 240 V	$1(2)$	$0.5 \ldots 20$	5,000

UL 1077

voltage	number of poles	$\mathrm{I}_{\mathrm{N}} \max .(\mathrm{A})$	$\mathrm{I}_{\mathrm{cn}}(\mathrm{A})$
DC 80 V	$1+2$	$0.02 \ldots 125$	10,000
AC $277 / 480 \mathrm{~V}$	$1-6$	$0.02 \ldots 70$	5,000

Technical data

Voltage rating	3 AC 415 V; AC $277 / 480$ V;
	AC 120/240 V; AC 240 V; DC 80 V,
Current rating range	$0.05 \ldots 125$ A single and multipole

Auxiliary circuit	$\begin{aligned} & \text { AC } 240 \vee 6 \mathrm{~A} \\ & \mathrm{DC} 28 \mathrm{~V} 3 \mathrm{~A} \\ & \mathrm{DC} 65 \mathrm{~V} 1 \mathrm{~A} \\ & \mathrm{DC} 80 \mathrm{~V} 0.5 \mathrm{~A} \end{aligned}$
Typical life	10,000 operations at $1 \times I_{N}$
Ambient temperature	$-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	$2.5 \mathrm{kV} / 2$ reinforced insulation in operating area
Dielectric strength operating area pole to pole main to auxiliary circuit switching to trip circuit	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Degree of protection (IEC 60529)	operating area IP40 terminal area IPOO
Vibration upside down: directions 1, 2, 3, 4, 5 : with curves F1, F2:	$10 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0,76 \mathrm{~mm}(10-57 \mathrm{~Hz})$ at $0.9 \mathrm{I}_{\mathrm{N}}$ 10 g at $1 \times \mathrm{I}_{\mathrm{N}}$ 10 g at $0.8 \times \mathrm{I}_{\mathrm{N}}$ in all planes. $(57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis

Shock
directions 1, 2, 3, 4, 5: $100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \times \mathrm{I}_{\mathrm{N}}$,
direction 6: $\quad 100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$,
with curves F1, F2: $\quad 100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$ to IEC 60068-2-27, test Ea

Corrosion	96 hours at 5% salt mist, to IEC $60068-2-11$, test Ka
Humidity	240 hours at 95% RH, to IEC $60068-2-78$, test Cab
Mass	approx. $90-120$ g per pole depending on version

Approvals	
VDE (EN 60934)	1- to 6-pole
UL 489	
UL 1077	1- to 6-pole
CCC	1- to 4-pole

Type No

8345

Mounting

B flange mounting, with rectangular aperture with mounting nut 6-32UNC
C flange mounting, with rectangular aperture with mounting nut M3
E flange mounting, with round aperture with mounting nut 6-32UNC
\bar{F} flange mounting, with round aperture with mounting nut M3
X flange mounting, with rectangular aperture, with 2 mounting brackets
Configuration
0 without barrier
1 with small barrier
2 with large barrier (requested for multipole AC applications with approvals to UL 489, UL 1077, IEC)
Number of poles
0 single pole unprotected
1 single pole protected
2 two pole protected
3 three pole protected
4 four pole protected
$\overline{\mathrm{P}}$ one pole protected, two poles connected in parallel characteristic curves E/H/R upon request
Q one pole protected, three poles connected in paralle characteristic curves $\mathrm{E} / \mathrm{H} / \mathrm{R}$ upon request
R one pole protected, four poles connected in paralle characteristic curves $\mathrm{E} / \mathrm{H} / \mathrm{R}$ upon request
S one pole protected, five poles connected in parallel characteristic curves $\mathrm{E} / \mathrm{H} / \mathrm{R}$ upon request
Actuator configuration
A all poles with standard toggle
B reduced number of standard toggles
Z without actuator
Terminal design
L screw terminals M5 $\leq 50 \mathrm{~A}$
M solder terminals $\leq 75 \mathrm{~A}$
P blade terminals $\leq 35 \mathrm{~A}$
R round connectors 6 mm
S stud terminals $\mathrm{M} 5 \leq 60 \mathrm{~A}$
T stud terminals $10-32 \mathrm{UNF}-3 \mathrm{~A} \leq 60 \mathrm{~A}$
U stud terminals $\mathrm{M} 6 \leq 125 \mathrm{~A}$
V stud terminals $1 / 4-20$ UNC- $3 \mathrm{~A} \leq 125 \mathrm{~A}$
W laminated round terminals $\leq 125 \mathrm{~A}$
Terminal hardware
0 without
3 with washer and nut
6 Phillips screws
Characteristic curve
K1 short delay DC
K2 short delay AC
M0 medium delay AC/DC
M1 medium delay DC
M2 medium delay AC
Q0 switch only
T1 long delay DC
T2 long delay AC
Version
D standard
Colour configuration
B1 black actuator
B2 white actuator
B3 blue actuator
Marking

front plate	actuator bas
B1 without	ON-OFF
B2 I_{N}	ON-OFF
B3 I_{N}	ON-OFF

characteristic curve
B4 I_{N}, characteristic curve, ON-OFF wiring diagram on side

Rated voltage
B AC or ≤ 80 V DC
C $\mathrm{DC} \leq 80 \mathrm{~V}$
$\mathrm{AC} \leq 277 \mathrm{~V}$
(only for configurations 0 and 1 for UL 1077)

[^18]

Remote trip coil available to special order!

Ordering information for auxiliary contact module

Type nu	
X8345	
	Module
	S auxiliary contact module
	Auxiliary contacts
	01 in all poles
	02 in pole 1 only
	03 in poles 1+3 only
	04 in pole 2 only
	Auxiliary contact version
	H auxiliary contacts standard, gold-flushed (asymmetrical terminals)
	K auxiliary contacts, tin-plated (symmetrical terminals)
	Auxiliary contact function
	W1 1 changeover
	W2 2 changeover
	Terminal design
	02 microswitch with blade terminals DIN 46244-A2.8-0.5
	M mounted to base unit
X8345	S 01 H W1 02 M ordering example

Ordering information for UL 489

Remote trip coil available to special order!

Ordering information for auxiliary contact module

E-TAO Magnetic and Hydraulic-Magnetic Circuit Breaker 8345-...

Dimensions

Mounting version B/C
Mounting version $\mathbf{B / C}$
Flange mounting rectangular aperture
number of poles 1 to 4
pole $\begin{array}{llll}1 & 2 & 3\end{array}$

mounting thread M3 or 6-32
all dimensions referred to the top edge mounting depth $4.2 \mathrm{~mm} / .165 \mathrm{in}$ max. insertion depth 5.5 mm
max. tightening torque 0.33 Nm

Cut-out dimensions:
1-pole

$$
\begin{aligned}
& \text { number of poles } 1 \text { to } 4 \\
& 1
\end{aligned}
$$

mounting thread M3 or 6-32 all dimensions referred to the top edge mounting depth $4.2 \mathrm{~mm} / .165 \mathrm{in}$. max. insertion depth 5.5 mm
Cut-out dimensions:
1-pole max. tightening torque 0.33 Nm

max. panel thickness: 3 mm

Mounting version X
Flange mounting, with rectangular aperture, with 2 mounting brackets

Installation drawing

P - with blade terminals

blade terminal A6.3-0.8 (QC .250) DIN 46244

L - with screw terminals

M - with solder terminals

R - round connectors $\mathrm{D}=6 \mathrm{~mm}$ (dia .236) (version H) asymmetrical terminals (not for UL 489)

S/U/T/V - with auxiliary contacts (version H) asymmetrical terminals (not for UL 489)

auxiliary contacts version K symmetrical terminals

W - laminated round terminals

Number of poles / Dimensions

P 1-pole protected, 2-poles connected in parallel for rating currents from 150 to 180 A
tightening torque:
M8 max. 6 Nm

Internal connection diagrams

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

(trip time at rated current and all poles symmetrically loaded)

Curve K1 (short delay) for DC

Curve K2 (short delay) for AC $50 / 60 \mathrm{~Hz}$

Curve T1 (long delay) for DC

Curve M0 (medium delay) for AC/DC

Curve M1 (medium delay) for DC

Curve M2 (medium delay) for AC $50 / 60 \mathrm{~Hz}$

Curve T2 (long delay) for AC 50/60 Hz

All curves will only be maintained if the escutcheon is mounted on a vertical surface.
Other characteristic curves to special order (e. g. pulse delayed, for high inrush currents or capacitive loads).

Actuator configuration

A 1 toggle per pole, mounting version B / C

B reduced number of toggles per unit, mounting version B / C

Z without toggles

A 1 toggle per pole, mounting version E / F

B reduced number of toggles per unit, mounting version E/F

Interphase barriers / Dimensions

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Accessories

Splash cover (IP65) for 1-, 2-, 3-pole (only for mounting version B/C)
number of

poles \begin{tabular}{c}
mounting

version

\quad

actuator

configuration
\end{tabular}

Toggle guard (only for mounting version B / C) Y 30738101

Shock directions

Description
A module which adds remote trip capability to all versions of type 8345. A voltage applied across the coil, by means of an external sensor for example, will cause disconnection of the main switch/circuit breaker mechanism.

Typical applications

Electrical monitoring of safety systems, remote trip.

Ord	ering information
Type N	
X8345	Module for type 8345
	Module
	F remote trip module
	Assembly version
	01 only in pole 1
	02 only in pole 2
	03 only in pole 3
	04 only in pole 4
	Remote trip version
	X1 DC
	Voltage rating
	1212 V
	2424 V
	4848 V
	M module mounted to circuit breaker

Voltage ratings and typical internal resistance values

Voltage ratings	Internal resistance (Ω)
DC 12 V	3.4
DC 24 V	13.9
DC 48 V	64.3

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{mch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Dimensions

Additional remote trip module

Internal connection diagram

1-pole protected hydraulic-magnetically with additiona remote trip coil

Technical data

Voltage ratings	DC 12 V ; DC 24 V ; DC 48 V
Power consumption	approx. 40 W
Pulse operation	$20 \mathrm{~ms}<\mathrm{t}_{\mathrm{ON}}<100 \mathrm{~ms} / \mathrm{t}_{\text {OFF }}>10 \mathrm{sec}$ (Continuous duty possible for multipole devices upon request)
Typical life	10,000 operations at U_{N}
Ambient temperature	$-40 \ldots+85{ }^{\circ} \mathrm{C}\left(-40 \ldots+185{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	2.5 kV/2 (EN 60934)
Dielectric strength between main circuit and trip coil circuit	test voltage AC 3,000 V (EN 60934)
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Vibration	$\begin{aligned} & 6 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0.46 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { shock direction } 1 / 2 \\ & 4 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0.30 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { shock direction } 3 / 4 \\ & 3 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { shock direction } 5 / 6 \\ & \text { to IEC } 60068-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	100 g (11 ms) (not when mounted upside down) to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-78, test Cab
Mass	approx. 8.5 g (without base unit)

Description

The X8345-R is an additional module which provides remotely controlled ON and OFF functionality for the E-T-A series 8345 magnetic circuit breaker range. The module actuator, which is motor driven, is factory fitted adjacent to the circuit breaker(s) which it is controlling. The module can be operated by a suitable external changeover switch, momentary switches (one ON, one OFF) or logic system (not part of our product). The status of the actuator will follow the position of the external switch, i.e. if the circuit breaker trips electrically or is operated manually, the actuator will not change.
A single module will control a single pole breaker or multipole circuit breakers up to 3 poles. In the application it has to be ensured that the supply voltage is maintained at all times.
When switching the circuit breaker OFF manually the module has also to be switched off by means of te changeover switch before switching the breaker on again. The same is true for normal switch-on of the breaker.

Ordering information

Type nu	mber
X8345	Module for type 8345, 1, 2 and 3 pole
	Module
	R remote ON/OFF actuation
	Operating voltage
	24 DC 24 V
	Add-on version
	01 mounted on right side
	Mounting method
	00 front panel mounting (standard)
	01 single bracket: module fitted
	02 2-bracket: module and circuit breaker fitted
	Terminal design
	01 spring loaded screwless terminal 5-pin Supply status
	M module mounted to the base unit
X8345-R 24010001 M - ordering example	

Note: Bold-type, blue configurations are standard versions which are presently available.

Technical data	
Voltage rating	DC 24 V (16... 32 V)
ON duty	50 \%
Trip time	$<2 \mathrm{sec}$
Blocking current	$<1.5 \mathrm{~A}$
Control current	$<3 \mathrm{~mA}$
Typical life	10,000 operations (ON/OFF)
Ambient temperature	$-25 . .70^{\circ} \mathrm{C}\left(-13 . . .158{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	2.5 kV/2 (EN 60934)
Dielectric strength pole to module	test voltage AC 1,500 V (EN 60934)
Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V)
Vibration	$10 \mathrm{~g}(57-2000 \mathrm{~Hz}), \pm 0,76 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$\begin{aligned} & 100 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5\% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH, to IEC 60068-2-78, test Cab
Mass	approx. 65 g (without base unit)

Internal connection diagrams

single pole, hydraulic-magnetic protection,
with remote ON/OFF actuation
(operated by changeover switch)

single pole, hydraulic-magnetic protection,
with remote ON/OFF actuation
(actuated by two momentary switches)

Typical applications

Remote circuit breaker control (ON/OFF) for communication systems, marine installations, automation equipment and similar requirements.

Dimensions

spring loaded screwless terminal 5-pin

X8345-R-24-01-00-01-M

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single and double pole hydraulic-magnetic circuit breakers with trip-freemechanism and toggle actuation. A choice of switching characteristics ensures suitability for a wide range of applications. Industry standard dimensions and panel mounting. Auxiliary contacts optional. Low temperature sensitivity at rated load.
Complies with CBE standard EN 60934 (IEC 60934) S-type HM CBE.

Typical applications

Railway vehicles.
In the business fields Communication and Transport: power supplies, switchgear, instrumentation and process control engineering.

Standard current ratings and typical internal resistance values

8345
1-pole

2-pole

Technical data

Voltage rating	DC $110 \mathrm{~V} \pm 25$ \%
Current rating range	$0.05 \ldots 125 \mathrm{~A}$ higher ratings upon request
Auxiliary circuit	$\begin{aligned} & \text { AC } 240 \mathrm{~V} 6 \mathrm{~A} \\ & \text { DC } 28 \mathrm{~V} 3 \mathrm{~A} \\ & \text { DC } 65 \mathrm{~V} 1 \mathrm{~A} \\ & \mathrm{DC} 80 \mathrm{~V} 0.5 \mathrm{~A} \end{aligned}$
Typical life	5,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-40 \ldots+85^{\circ} \mathrm{C}\left(-40 \ldots+185^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	$2.5 \mathrm{kV} / 2$ reinforced insulation in operating area
Dielectric strength operating area pole to pole main to auxiliary circuit switching to trip circuit	test voltage AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC $3,000 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity ($l_{\text {cn }}$)	0.1... 125 A: 5,000 A (resistive load) 0.1... $100 \mathrm{~A}: 3,000 \mathrm{~A}$ (inductive load) 125 A: 2,000 A (inductive load)
Degree of protection (IEC 60529)	operating area IP40 terminal area IP00
Vibration upside down: directions 1, 2, 3, 4, 5 : with curve F1:	$\begin{aligned} & 10 \mathrm{~g}(57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { at } 0.9 \mathrm{I}_{\mathrm{N}} \\ & 10 \mathrm{~g} \text { at } 1 \times \mathrm{I}_{\mathrm{N}} \\ & 10 \mathrm{~g} \text { at } 0.8 \times \mathrm{I}_{\mathrm{N}} \text { in all planes. } \\ & (57-2000 \mathrm{~Hz}) \pm 0.76 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to } \mathrm{IEC} 60068-2-6, \text { test } \mathrm{Fc} \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock directions 1, 2, 3, 4, 5: direction 6: with curve F1:	$100 \mathrm{~g}(11 \mathrm{~ms})$ at $1 \times \mathrm{I}_{\mathrm{N}}$, $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$, $100 \mathrm{~g}(11 \mathrm{~ms})$ at $0.8 \times \mathrm{I}_{\mathrm{N}}$ to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5\% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH, to IEC 60068-2-78, test Cab
Flammability	Class I1 to NF EN ISO 4589-3 and ISO 4589-1 and -2
Smoke emission visibility	Class F0 to NF X 10-702-2 "smoke chamber«
Mass	approx. 65 g per pole depending on version

Ordering information

Remote trip coil available to special order!

B flange mounting, with rectangular aperture with mounting nut 6-32UNC
C flange mounting, with rectangular aperture with mounting nut M3
E flange mounting, with round aperture with mounting nut 6-32UNC
lange mounting, with round aperture with mounting nut M
flange mounting, with rectangular aperture, with 2 mounting brackets
guraion
without barrier
with small barrier
with large barrie
Number of poles

1 single pole protected
2 two pole protected
A all poles with standard toggle
B reduced number of standard toggles
Terminal design
L screw terminals $\mathrm{M} 5 \leq 50 \mathrm{~A}$
dider terminals $\leq 75 \mathrm{~A}$
R round connectors 6 mm
stud terminals $10-32 U N F-3 \mathrm{~A} \leq 60 \mathrm{~A}$
U stud terminals M6 5125 A
位 terminals $1 / 4-20$ NC- $3 \mathrm{~A} \leq 125 \mathrm{~A}$
Terminal hardware
0 without
Phillips screws
Characteristic curve
F1 instantaneous trip ≤ 50 A (tripping current 150%) instantaneous trip ≤ 50 A (tripping current 125%)

1 1 medum Q0 switch only T1 long delay D standard

Colour configuration
B1 black actuator
B3 blue actuator
I_{N} characteristic curve, without wing diagram on side

B2 $I_{N} \quad$ ON-OFF
characteristic curve
I_{N}, characteristic curve, ON-OFF
Rated voltage
DC 110 V
ratings
05... 125 A
higher current ratings
upon request

Ordering information for auxiliary contact module

Dimensions

Mounting version B／C
Flange mounting rectangular aperture
number of poles 1 to pole $1 \quad 2$

mounting thread M3 or 6－32 all dimensions referred to the top edge mounting depth $4.2 \mathrm{~mm} / .165 \mathrm{in}$ ． max．tightening torque 0.33 Nm

Cut－out dimensions

Mounting version E／F
Flange mounting round aperture

$$
\begin{aligned}
& \text { number of poles } \\
& \text { pole } \\
& 1
\end{aligned}
$$

mounting thread M3 or 6－32 all dimensions referred to the top edge mounting depth $4.2 \mathrm{~mm} / .165 \mathrm{in}$ ． max．insertion depth 5.5 mm max．tightening torque 0.33 Nm
Cut－out dimensions：

Mounting version X
Flange mounting，with rectangular aperture，with 2 mounting brackets

Installation drawing

Terminal design / Dimensions

P - with blade terminals

blade terminal A6.3-0.8 (QC .250) DIN 46244

L-with screw terminals

M - with solder terminals

R - round connectors $\mathrm{D}=6 \mathrm{~mm}$ (dia .236) (version H) asymmetrical terminals (not for UL 489)

S/U/T/V - with auxiliary contacts (version H) asymmetrical terminals (not for UL 489)

auxiliary contacts version K symmetrical terminals

W - laminated round terminals

Internal connection diagrams

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

(trip time at rated current and all poles symmetrically loaded)

Curve F1 (instantaneous trip) $\leq 50 \mathrm{~A}$

Curve K1 (short delay)

Curve F7 (instantaneous trip) $\leq 50 \mathrm{~A}$

Curve M1 (medium delay)

Curve T1 (long delay)

All curves will only be maintained if the escutcheon is mounted on a vertical surface.
Other characteristic curves to special order (e.g. pulse delayed, for high inrush currents or capacitive loads).

Actuator configuration

A 1 toggle per pole, mounting version B / C

B reduced number of toggles per unit, mounting version B/C

Z without toggles

A 1 toggle per pole, mounting version E / F

B reduced number of toggles per unit, mounting version E/F

Interphase barriers / Dimensions

Accessories

Splash cover (IP65) for 1-, 2-pole (only for mounting version B/C)

Toggle guard (only for mounting version B / C) Y 30738101

Shock directions

[^19]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single, double and three pole high performance thermal-magnetic circuit breakers with tease-free, trip-free, snap action mechanism and toggle actuation (S-type TM CBE to EN 60 934; also to EN 60 947). Designed for rail, panel or surface mounting. Available with a choice of characteristic curves and optional auxiliary contacts.

Typical applications

Motors, generators, transformers, thyristors and silicon rectifiers.

Interrupting capacity to IEC 60947/EN 60947

AC voltage					
Number of poles	Voltage rating	Interrupting capacity $\mathrm{I}_{\mathrm{N}} 12 \ldots . .125 \mathrm{~A}$	Power factor	Interrupting capacity $\mathrm{I}_{\mathrm{N}} 7+10 \mathrm{~A}$	Power factor
1	AC 240 V	5,000 A	$\cos \varphi=0.7$	3,500 A	$\cos \varphi=0.8$
2	AC 240 V	8,000 A	$\cos \varphi=0.7$	6,000 A	$\cos \varphi=0.7$
3	3 AC 415 V	5,000 A	$\cos \varphi=0.7$	3,000 A	$\cos \varphi=0.85$
DC voltage					
Number of poles	Voltage rating	Interrupting capacity $\mathrm{I}_{\mathrm{N}}=12 \ldots 125 \mathrm{~A}$	Time constant	Interrupting capacity $\mathrm{I}_{\mathrm{N}}=7+10 \mathrm{~A}$	Time constant
1	DC 110 V	3,000 A	13 ms	3,000 A	$L / R=5 \mathrm{~ms}$
1	DC 110 V	5,000 A	5 ms		
2	DC 110 V	5,000 A	13 ms	3,000 A	$L / \mathrm{R}=5 \mathrm{~ms}$
2	DC 110 V	10,000 A	$\approx 0 \mathrm{~ms}$		

Standard current ratings and typical internal resistance values

Curves 01, 02, 04, 05: Current rating (A)	Internal resistance (Ω) per pole	Curves B3, C3: Current rating (\mathbf{A})	
10	0.033	7	Internal resistance (Ω) per pole
16	0.015	10	0.033
20	0.010	12	0.015
25	0.0062	16	0.010
32	0.0039	20	0.0062
40	0.0031	25	0.0039
50	0.0022	32	0.0031
63	≤ 0.002	40	0.0022
80	≤ 0.002	50	≤ 0.002
90	≤ 0.002	63	≤ 0.002
100	≤ 0.002	80	≤ 0.002
125	≤ 0.002	100	≤ 0.002

Approvals		
Authority	Voltage ratings	Current ratings
UL	AC 277 V	$7 . . .125 \mathrm{~A}$ (type 520)
UL Canada	AC 277 V	$7 . .125 \mathrm{~A}$ (type 520)

Technical data

Voltage rating	$\begin{aligned} & \text { AC } 240 \mathrm{~V} ; 3 \mathrm{AC} 415 \mathrm{~V} \text {; } \\ & \text { DC } 110 \mathrm{~V} \end{aligned}$
Current rating range	10... 125 A (EN 60947), curves 01/02/04/05 7... 100 A (EN 60898), curves B3/C3/01
Auxiliary circuit	$\begin{aligned} & 6 \mathrm{~A}, \mathrm{AC} 240 \mathrm{~V} \text { or DC } 28 \mathrm{~V} \\ & 1 \mathrm{~A}, \mathrm{DC} 110 \mathrm{~V} \end{aligned}$
Typical life	10,000 operations at $1 \times I_{N}$ 20,000 operations mechanical
Ambient temperature	$-20 \ldots+60^{\circ} \mathrm{C}\left(-4 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 6 kV 3

Dielectric strength

(IEC 60664 and 60664A)	test voltage
operating area	AC $3,300 \mathrm{~V}$
pole/pole	AC 3,300 V
main circuit/aux.circuit	AC 2,200 V
aux. circuit 11-12/13-14	AC $1,000 \mathrm{~V}$

Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V)
Degree ef protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	curves 02/04/05/B3/C3: $4 \mathrm{~g}(60-500 \mathrm{~Hz}), \pm 0.30 \mathrm{~mm}(10-60 \mathrm{~Hz})$ curve 01: $3 \mathrm{~g}(60-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-60 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	curves 02, 04, 05, B3, C3: 50 g (11 ms) directions 1, 2, 3, 4, 5 30 g in direction 6 curve 01: 30 g (11 ms) in directions 1, 2, 3, 4, 5 20 g in direction 6 to IEC 60068-27, test Ea
Corrosion	96 hours at 5% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-3, test Ca
Mass	410 (1-pole): approx. 290 g 520 (2-pole): approx. 580 g 530 (3-pole): approx. 870 g

Ordering information

Type No．
410 single pole（ratings＞ 125 A：suffix 17015 －parallel connection）
520 double pole
530 three pole
Terminal design－main terminals
K screw terminals
10－32 A pressure plate B5－DIN 46288 （curves B3／C3，7－25 A） 40－63 A pressure plate B6－DIN 46288 （curves B3／C3，32－63 A） 80－125 A terminal screw DIN 46206，sheet 2，form 1，M6 thread
Mounting
1 surface mounting
2 rail mounting（DIN EN 50022－35x7．5）or panel mounting
3 rail mounting on G profile（DIN EN 50035－G32） or panel mounting
4 panel mounting with cylinder head screw M3．5
5 mounting brackets
Magnetic trip curves
$01 \quad 2.1-3 \times I_{N} \mathrm{AC}$（thyristor and rectifier protection）
$02 \quad 7-10 \times I_{N} A C$（motor and generator protection to EN 60947）
$04 \quad 3.5-5 \times \mathrm{I}_{\mathrm{N}} \mathrm{AC}$（cable protection to EN 60947）
$05 \quad 4-6 \times I_{N} A C$（generator protection to EN 60947）
B3 $\quad 3-5 \times I_{N} A C$（cable protection to EN 60898）
C3 $\quad 5-10 \times \mathrm{I}_{\mathrm{N}}$ AC（cable protection to EN 60898）
Auxiliary contacts optional（terminals M3．5）
Si one each N／O and N／C contact
Si1 one N／C $(11,12)$
Si2 one N／O $(13,14)$
2Si two each N／O and N／C（types 520／530）
3Si three N／C，three N／O（type 530）
Current ratings
7．．． 125 A
$520-\mathrm{K}-1-01-\ldots-10 \mathrm{~A} \quad$ ordering example
The exact number required can be built up from the table of choices shown above Ordering references for optional features should be omitted if not required．

Mounting methods

${ }_{-1}$ Surface mounting	rail mounting （DIN EN 50 022－35×7，5）
5	Wares
rail mounting on G profile （DIN EN 50 035－G32）	panel mounting
隹	

Dimensions

Current rating	Dimensions mm／in．				Terminal	Cross section（see DIN 46288）		Max． tightening torque
	B	C	D	E		with 1 or 2 equal conductors	with 2 different conductors	
$\leq 32 \mathrm{~A}$	M5	$\begin{aligned} & 13 \\ & .512 \end{aligned}$	$\begin{aligned} & 114 \\ & 4.49 \end{aligned}$	$\begin{gathered} 7 \\ 276 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { pressure } \\ \text { plate B5 } \\ \text { DN } 46288 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { to } \\ & 10 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { to } \\ & 10 \mathrm{~mm}^{2} \end{aligned}$	2.0 Nm
$\leq 63 \mathrm{~A}$	M6	$\begin{aligned} & 15.4 \\ & .606 \end{aligned}$	$\begin{aligned} & 120 \\ & 4.72 \end{aligned}$	$9 \begin{gathered} 9 \\ .354 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { pressure } \\ \text { plate B6 } \\ \text { DIN } 46288 \end{array}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \text { to } \\ 16 \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & 4 \mathrm{~mm}^{2} \text { and } 6 \mathrm{~mm}^{2} \\ & 6 \mathrm{~mm}^{2} \text { to } 16 \mathrm{~mm}^{2} \end{aligned}$	2.5 Nm
$\leq 125 \mathrm{~A}$	M6	$\begin{aligned} & 15.4 \\ & .606 \end{aligned}$	$\begin{aligned} & 120 \\ & 4.72 \end{aligned}$	$\begin{gathered} 9 \\ .354 \end{gathered}$	terminal screw			2.5 Nm

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Magnetic trip curves B3,C3

${ }^{1)}$ Magnetic tripping currents are increased by 20% on DC supplies.

Internal connection diagrams

Type 520-K-Si

Type 530-K-Si

Type 530-K-3Si

Shock directions

Accessories

Splash cover (transparent),

 with fixing plate and screws (IP54)
for type 410

X 21111801

X 21111901

Splash cover (transparent),
with fixing plate and screws (IP54)
for type 520

Terminal insulation cover for 410/520/530-...
X 21170501
(1 set $=2$ pcs per pole)

protected against brush contact *

* to DIN 57106T100/VDE 0106 T100

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single pole high performance thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted and available in tracked vehicle, aircraft and general purpose versions.

Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air; defence equipment; battery powered machines.

Ordering information

Type No.	
412	threadneck panel mounting
	Terminal design
	K14 screw terminals M4 (to aircraft specs.)
	K54 screw terminals M4 sealed housing (to vehicle specs.)
	Version
	FN2 vehicle application, nickel-plated
	LN2 aircraft application, black finish
	N2 general application, nickel-plated
	Current ratings
	6...25 A (-FN2)
	7.5...35 A (-LN2/N2)
412-	K14-LN2-10 A ordering example

Standard current ratings and typical voltage drop values

Current	Voltage drop (mV)		Current		Voltage drop (mV)	
rating (A)	-LN/N	-FN	rating (A)	-LN/N	-FN	
6	-	≤ 300	15	≤ 200	≤ 200	
7.5	≤ 300	≤ 250	20	≤ 200	≤ 200	
8	≤ 250	≤ 200	25	≤ 200	≤ 200	
10	≤ 200	≤ 200	30	≤ 200	-	
12	≤ 200	≤ 200	35	≤ 200	-	
13	≤ 200	≤ 200				

Approvals		
Test authority	Voltage ratings	Current ratings
UL	DC 28 V	$0.1 \ldots 35 \mathrm{~A}$

Technical data

Voltage rating	$\begin{aligned} & \text { DC } 28 \mathrm{~V} \\ & \text { AC } 115 \mathrm{~V}(400 \mathrm{~Hz}) \text { upon request } \end{aligned}$
Current rating range	6... 25 A (-FN2) 7.5... 35 A (-LN2/-N2), lower current ratings to special order
Typical life	4,000 operations at $2 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55 \ldots+75{ }^{\circ} \mathrm{C}\left(-67 \ldots+167{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	6,000 A
Interrupting capacity (UL 1077)	6,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$\begin{aligned} & 10 \mathrm{~g}(56-500 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz}) \\ & \text { to VG } 95210 \text {, sheet } 19, \\ & \text { MIL-STD-202, meth. } 204, \\ & \text { IEC 60068-2-6, test Fc } \end{aligned}$
Shock	25 g (11 ms) to VG 95210, sheet 28, MIL-STD-202, meth. 213, IEC 60068-2-27, test Ea
Corrosion	96 hours at 5% salt mist, to VG 95210, sheet 2, MIL-STD-202, meth. 101, IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7, MIL-STD-202, meth. 106, IEC 60068-2-3, test Ca
Mass	approx. 40 g

Dimensions

412-K54-FN2/N2

412-K14/K54-FN2/N2

412-K14-LN2

412-K14/K54-LN2

Internal connection diagram

Typical time/current characteristics

Accessories (approved to VG 95345, part 23)

Splash cover /hex nut assembly with O ring (IP66 and IP67) X 20080108 - nickel plated nut M12x1, transparent cover X 20080103 - matt black finish nut M12x1, black cover

Splash cover black /hex nut assembly with O ring (IP54)
X 20080201 - nickel plated nut M12x1
X 20080202 - matt black finish nut M12x1

Actuator extension (black) to be fitted on the push button
X 20080301

Accessories

Identification collar to be snapped on the push button
Y 30700401 black
Y 30700402 white
Y 30700403 red
Y 30700404 green
Y 30700405 blue

Lock out ring to block the push button in OFF position Y 30700501 red
Y 30700502 black

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single pole high performance thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted and available in tracked vehicle, aircraft and general purpose versions.

Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air; defence equipment; battery powered machines.

Ordering information

Type No.	
413	threadneck panel mounting
	Terminal design
	K14 screw terminals M6 (to aircraft specs.)
	K34 reinforced screw terminals M6 (to vehicle specs.)
	K54 as K34, but housing sealed
	Version
	FN2 vehicle application, nickel-plated
	LN2 aircraft application, black finish
	N2 general application, nickel-plated
	Current ratings
	30...55 A (-FN2)
	30...90 A (-LN2/N2)
413-K14-LN2-40 A ordering example	

Standard current ratings and typical voltage drop values

Current	Voltage drop (mV)		Current		Voltage drop (mV)	
rating (A)	-LN/N	-FN	rating (A)	-LN/N	-FN	
30	≤ 250	≤ 250	55	-	≤ 200	
35	≤ 250	≤ 250	60	≤ 200	-	
40	≤ 200	≤ 200	70	≤ 200	-	
45	≤ 200	≤ 200	80	≤ 200	-	
50	≤ 200	≤ 200	90	≤ 200	-	

Approvals

Test authority	Voltage ratings	Current ratings
UL	DC 28 V	$30 \ldots . .90 \mathrm{~A}$
QPL Sweden	DC 28 V	$30 \ldots . .50 \mathrm{~A}$

Technical data

Voltage rating	DC 28 V AC $115 \mathrm{~V}(400 \mathrm{~Hz})$ upon request
Current rating range	$\begin{aligned} & 30 \ldots 55 \text { A (-FN2) } \\ & 30 . . .90 \text { A (-LN2/-N2), } \end{aligned}$
Typical life	2,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55 . . .+75{ }^{\circ} \mathrm{C}$ ($-67 \ldots+167{ }^{\circ} \mathrm{F}$)
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V)
Interrupting capacity I_{cn}	6,000 A
Interrupting capacity (UL 1077)	6,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$\begin{aligned} & 10 \mathrm{~g}(56-500 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz}) \\ & \text { to VG } 95210 \text {, sheet } 19, \\ & \text { MIL-STD-202, meth. 204, } \\ & \text { IEC 60068-2-6, test Fc } \end{aligned}$
Shock	50 g (11 ms) to VG 95210, sheet 28, MIL-STD-202, meth. 213, IEC 60068-2-27, test Ea
Corrosion	96 hours at 5% salt mist, to VG 95210, sheet 2, MIL-STD-202, meth. 101, IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7, MIL-STD-202, meth. 106, IEC 60068-2-3, test Ca
Mass	approx. 65 g

Dimensions

413-K14-...

tightening torque max. 2.5 Nm

413-K34/K54-...

lock washer DIN 137-B6 (-LN)
lock washer DIN 137-B6
tightening torque max. 2.5 Nm

413-K34/K54-FN2/-N2

tightening torque max. 4 Nm

Internal connection diagram

Typical time/current characteristics

Accessories (approved to VG 95345, part 23)

Splash cover /hex nut assembly with O ring (IP66 and IP67)
X 20080108 - nickel plated nut M12x1, transparent cover
X 20080103 - matt black finish nut M12x1, black cover

Splash cover black /hex nut assembly with O ring (IP54)
X 20080201 - nickel plated nut M12x1
X 20080202 - matt black finish nut M12x1

Actuator extension (black) to be fitted on the push button X 20080301

Accessories

Identification collar to be snapped on the push button
Y 30700401 black
Y 30700402 white
Y 30700403 red
Y 30700404 green Y 30700405 blue

Lock out ring to block the push button in OFF position Y 30700501 red
Y 30700502 black

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single pole high performance version of type 3200 (section 2) thermalmagnetic circuit breaker with tease-free, trip-free, snap action mechanism and additional manual release (M-type TM CBE to EN 60934). Designed for plug-in mounting with E-T-A sockets 10R or 16. Available with optional silver plated terminal pins for use in corrosive environments. Approved to CBE standard EN 60934 (IEC 60934).

Typical applications

Extra low voltage systems, control equipment.

Ordering information

Standard current ratings and typical internal resistance values

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
0.05	534	4	0.1407
0.1	149	5	0.1068
0.2	56	6	0.0627
0.3	24.2	7	0.0491
0.4	13.65	8	≤ 0.02
0.5	8.08	10	≤ 0.02
0.6	5.25	12	≤ 0.02
0.8	3.55	14	≤ 0.02
1	2.02	15	≤ 0.02
1.5	0.904	16	≤ 0.02
2	0.514	18	≤ 0.02
2.5	0.36	20	≤ 0.02
3	0.23	25	≤ 0.02

Approvals

Authority	Voltage ratings	Current ratings
VDE (EN 60934)	AC 240 V; DC 28 V	$0.05 \ldots 25 \mathrm{~A}$

Technical data

For further details please see chapter: Technical Information

Voltage rating	AC $250 \mathrm{~V}(50 / 60 \mathrm{~Hz}$); DC 28 V
Current rating range	0.05... 25 A
Typical life	2,000 operations at $1 \times I_{N}$, inductive 4,000 operations at $1 \times I_{N}$, resistive
Ambient temperature	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 2.5 kV 2 reinforced insulation in operating area
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $3,000 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$0.05 \ldots 5 \mathrm{~A}$ 400 A $5.5 \ldots 7.5 \mathrm{~A}$ 750 A 8...25 A $1,500 \mathrm{~A}$ (with back-up fuse NH 40 A to IEC $60269 /$ VDE 0636)
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$5 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to IEC 60068-2-3, test Ca
Mass	approx. 50 g

Dimensions

Internal connection diagram

Installation drawing

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Typical time/current characteristics

10R-A10
(continuous load up to 16 A)

Bus bars for sockets 10.-...:
(continuous load up to 20 A)
Y 30116602 (2-way)
Y 30116601 (4-way)

Socket 16
(continuous load up to 16 A)

Blanking plug
Y 30147701
for sockets 10R-P10/K10/A10
Terminal for mounting rack X 20080001
for socket 10R, 10F
on EN rail 50 035-G32

Connector bus links -K10
X 210589 01/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load)
X 210589 02/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load) for sockets 10R-P10, 10R-A10 and Nr. 16

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load) X 210588 02/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load)
X $21058803 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), blue (up to 20 A max. load)

100 quick-connect tabs 6.3 (.250)
DIN 46247 tinned bras.
insulated

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single pole high performance thermal-magnetic circuit breaker with tease-free, trip-free, snap action mechanism and toggle actuation (S-type TM CBE to EN 60934). Options include auxiliary contacts, a moulded flame retardant enclosure for added environmental protection, and remote operation - disconnection only, or disconnection and re-connection. Now also available in an IP65 housing (see E-1032, page 269).

Typical applications

Battery and cable protection for all types of vehicles (including rail vehicles and boats), battery powered systems.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

```
Standard current ratings and typical internal resistance values
```

Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
40	<0.003	120	≤ 0.002
50	<0.002	160	≤ 0.001
63	≤ 0.002	200	≤ 0.001
80	≤ 0.002	240	≤ 0.001
100	≤ 0.002		

Technical data

Voltage rating	DC 144 V (higher voltage ratings upon request)
Current rating range	40... 240 A (higher current ratings upon request)
Auxiliary contact rating	6 A max. at DC 28 V 0.2 A at DC 180 V
Electrical remote disconn operating voltage operating current max. pulse time switching time	ction (-FA) DC 12 V or DC 24 V approx. 18 A or 12 A $10 \mathrm{~ms}<\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ms} / \mathrm{t}_{\text {OFF }}>10 \mathrm{~s}$ $<20 \mathrm{~ms}$
Electrical remote re-conn operating voltage operating current max. pulse time switching time	ction (-FC) DC 12 V or DC 24 V approx. 30 A or 15 A $0.1 \mathrm{~s}<\mathrm{t}_{\mathrm{ON}}<1.2 \mathrm{~s} / \mathrm{t}_{\mathrm{OFF}}>60 \mathrm{~s}$ $<100 \mathrm{~ms}$
Typical life	3,000 operations at $240 \mathrm{~A}, \mathrm{DC} 180 \mathrm{~V}$ 10,000 operations at 240 A, DC 28 V 20,000 operations mechanical
Ambient temperature	$-40 \ldots+60^{\circ} \mathrm{C}\left(-40 \ldots+140^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664 A)	rated impulse pollution withstand voltage degree 6 kV 3

Dielectric strength

(IEC 60664 and 60664 A)	test voltage
operating area	AC $3,300 \mathrm{~V}$
main to aux. circuit	AC $2,200 \mathrm{~V}$
aux. circuits $11-12$	

to 13-14 AC 1,000 V

Insulation resistance $\quad>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$

Interrupting capacity I_{cn}	$2,000 \mathrm{~A}$ at DC $180 \mathrm{~V} ; \mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$
	$10,000 \mathrm{~A}$ at DC $28 \mathrm{~V} ; \mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$
	$7,500 \mathrm{~A}$ at $\mathrm{DC} 28 \mathrm{~V} ; \mathrm{L} / \mathrm{R}=13 \mathrm{~ms}$

Degree of protection operating area IP40,
(IEC 60529/DIN 40050)
terminal area IPOO with enclusure B IP54 with enclosure C IP65
Vibration curve 06: $3 \mathrm{~g}(60-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-60 \mathrm{~Hz})$ curve 07: $4 \mathrm{~g}(60-500 \mathrm{~Hz}), \pm 0.30 \mathrm{~mm}(10-60 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock curve 06: $20 \mathrm{~g}(11 \mathrm{~ms})$, to IEC 60068-2-27, test Ea curve 07: $25 \mathrm{~g}(11 \mathrm{~ms})$, to IEC 60068-2-27, test Ea
Corrosion 48 hours at 5 \% salt mist, to IEC 60068-2-11, test Ka 240 hours at 95 \% RH, to IEC 60068-2-3, test Ca approx. 900 g base unit + approx. 400 g remote disconnection + approx. 100 g remote re-connection

+ approx. 750 g B housing
+ approx. 1,000 g C housing

Dimensions

Moulded enclosure IP54 -B3

Moulded enclosure IP65 -C3

Dimensions

437-K12-5-Si-...-FA

437-K60-1-...-FA

Terminals with housing C3

Dimensions

437-K12-...-BC-FA..

Internal connection diagram

Typical time/current characteristics at $+23{ }^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

[^20]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single pole thermal-magnetic circuit breakers with tease-free, trip-free, press-to-reset snap action mechanism and special dual button manual release which avoids the danger of unintended disconnection (M-type TM CBE to EN 60934). Surface mounted, compact design available with fast acting, standard and delayed switching characteristics.
Options include auxiliary contact and remote electrical disconnection.

Typical applications

Heavy duty vehicles, battery systems, process control.

Ordering information

Type No.

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

	Current rating (A)	Internal resistance (Ω)	Current rating (A)	Internal resistance (Ω)
Type 446	30	0.006	Type 447	
	40	0.0048	100	< 0.002
	50	0.0038	125	< 0.001
	60	0.0028	160	< 0.001
	70	0.0025	225	< 0.001
	80	0.0023	300	< 0.001
	90	0.0019	400	< 0.001
	100	0.0016	Type 449	
	125	< 0.001	125	< 0.001
	150	< 0.001	160	< 0.001
	170	< 0.001	225	< 0.001
	200	< 0.001	315	< 0.001
	225	< 0.001	350	< 0.001
	250	<0.001	400	<0.001
	300	< 0.001	500	< 0.001
	350	< 0.001	only with 50% ON duty	
	400	< 0.00		

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Technical data

Voltage rating	DC 28 V
Current rating range	type 446: 30... 400 A type 447: 100... 400 A type 449: 125... 500 A
Auxiliary circuit	10 A
Electrical remote discon operating voltage operating current max. pulse time switching time	```ction (-FA) DC 12 V or DC 24 V approx. 18 A or 12 A 10 ms < t toN < 20 ms / toFF > 10 s < 20 ms```
Typical life	1,000 operations at I_{N} 2,000 operations mechanical
Ambient temperature	$-55 \ldots+75^{\circ} \mathrm{C}\left(-67 \ldots+167^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 1.5 kV 3

Dielectric strength

(IEC 60664 and 60664A) operating area main circuit to auxiliary contacts	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance $1,500 \mathrm{~V}$	

Approvals

Authority	Voltage ratings	Current ratings	
Type 446:	UL	DC 28 V	$30 . .400 \mathrm{~A}$
Type 447:	UL	DC 28 V	$100 \ldots 400 \mathrm{~A}$
	QPL Sweden	DC 28 V	$125 . . .400 \mathrm{~A}$
Type 449:	UL	DC 28 V	$125 . .350 \mathrm{~A}$
	VG 95345, part 15	DC 28 V	$125 . .500 \mathrm{~A}$

Dimensions

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Internal connection diagrams

Typical time/current characteristics at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$

Typical time/current characteristics

Circuit breakers with remote disconnection facility will trip 10% faster.

Description

Single pole high performance thermal-magnetic circuit breaker, with tease-free, trip-free, snap action mechanism and push/pull on/off actuation (M-type TM CBE to EN 60934). An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted in tracked vehicle and aircraft/general purpose versions, with optional fast acting magnetic characteristics and auxiliary contacts.

Typical applications

Extra low voltage wiring systems on all types of vehicle for land, sea and air; defence equipment; battery powered machines.

Ordering information

Type	
452	standard delay curve
452-2 fast trip curve	
Terminal design	
	K14 screw terminals M6
	K34 screw terminals M6, reinforced
	Version
	FN2 vehicle application
	LN2 aircraft/general application
	Auxiliary contacts
	(blank) without auxiliary contacts
	S1 with auxiliary contact (connector EN 3155-016M2018 (NC)
	S5 as S1, but with polarized auxiliary contact (NC)
	Current ratings
	50... 100 A
452-	K14-LN2-S1-80 A ordering example

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop $(\mathbf{m V})$	Current rating (A)	Volt drop $(\mathbf{m V})$
50	90	80	92
60	85	90	100
70	85	100	100
75	90		

Approvals (without auxiliary contacts)

Authority	Voltage ratings	Current ratings
VG 95345, part 17	DC 28 V	$60 \ldots 100 \mathrm{~A}$
QPL, Canada	DC 28 V	$60 \ldots 100 \mathrm{~A}$
QPL, Sweden	DC 28 V	$60 \ldots 100 \mathrm{~A}(452-\mathrm{K} 34-\mathrm{FN})$
UL	DC 28 V ; DC 72 V	$50 \ldots 125 \mathrm{~A}$

Technical data

Voltage rating	DC 28 V
Current rating range	50... 100 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	2,500 operations at I_{N}
Ambient temperature	$-55 \ldots+75{ }^{\circ} \mathrm{C}\left(-67 \ldots+167{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength (IEC 60664 and 60664A) operating area	test voltage AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	6,000 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$10 \mathrm{~g}(55-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to VG 95210, sheet 19, IEC 60068-2-6, test Fc
Shock	50 g (11 ms) to VG 95210, sheet 28, IEC 60068-2-27, test Ea
Corrosion	96 hours at 5 \% salt mist to VG 95210, sheet 2, IEC 60068-2-11, test Ka
Humidity	240 hours at 95 \% RH to VG 95210, sheet 7, IEC 60068-2-3, test C
Explosion	to VG 95210, sheet 10 , MIL-STD-202, meth. 109
Mass	approx. 122 g without auxiliary contact approx. 126 g with auxiliary contact

Dimensions 452-K...-...

452-K34-FN2 (VG 95345 T17)

452-K14-LN2 (VG 95345 T17)

Dimensions 452-K..-S.

452-K34-LN2-S1 (VG 95345 T17)
452-K34-LN2-S5

Internal connection diagram

Typical time/current characteristics

452-2-... (fast trip)

Characteristic curves for AC to special order.

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Accessories (approved to VG 95345, part 23)

Splash cover/hex nut assembly with \mathbf{O} ring (IP66 and IP67) X 20080108 nickel plated nut, transparent cover X 20080103 matt black finish nut, black cover

Splash cover/hex nut assembly with O ring (IP54)
X 20080201 nickel plated nut
X 20080202 matt black finish nut

Actuator extension (black)
to be fitted on the push button
X 20080301

Accessories

Identification collar to be snapped on the push button

Lock out ring to block the push button in OFF position Y 30700501 red Y 30700502 black

FETRAO High Performance Thermal Circuit Breaker 482-...

Description

Single pole compact high performance thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted in tracked vehicle and aircraft/general purpose versions, with optional auxiliary contacts.

Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air, battery powered machines, process control.

Ordering information

Type No.
482 single pole thermal circuit breaker
Mounting
Threadneck design
1 M 12x1 nickel plated
2 M 12x1 black
3 15/32-UN-2A black
6 M12x1x8 black, without locating pin,
push button marking as with 482-G2.
7 M12x1x6,4 black, without locating pin, push button marking as with 482-G1.
Hardware - washer for threadneck
0 without hardware
1 corrugated washer $12 / 15$, fitted
2 serrated lock washer 12/15, fitted (MS 35333-136)
3 serrated lock washer 12/15, bulk shipped (MS 35333-136)
Hardware - hex nut for threadneck
0 without hardware
1 hex nut M12x1 nickel plated
2 hex nut M12x1 black
3 hex nut 15/32-UN-2B black, fitted
4 hex nut 15/32-UN-2B black, bulk shipped
Terminal design (main terminals)
K1 screw terminals with metric thread M4
J1 screw terminals with inch thread 8-32-UNC-2B
R1 round connector ø6

Characteristic curve

M1 thermal 1.15-1.4 I_{N}

A flat head screw M4x6, ISO 1580, fitted
B Phillips screw 8-32UNC-2Ax6
(MS 51957-41), fitted
F Phillips screw M4x6 (ISO 7045), bulk shipped
H socket head cap screw
M4x6 (DIN 7984), fitted
K hex screw 8-32UNC-3Ax7.6 fitted
Terminal washers
0 without lock washer
1 lock washer DIN 137-B4, fitted
2 lock washer 4.3, fitted, MS 35338-137
3 lock washer 4.3, bulk shipped
(MS 35338-137)
5 lock washer 4.3/9, fitted
6 lock washer DIN 137-B4, bulk shipped
Auxiliary contact
S0 without auxiliary contacts
S1 with auxiliary contact (NC)
S5 with polarized aux. contact (NC)
Barrier
(blank) without barrier
T with barrier, 31 mm wide
Current ratings
0.1... 50 A

10 a ordering example

482
without aux. contacts

with aux. contacts

Technical data

Voltage rating	AC $115 \mathrm{~V}(400 \mathrm{~Hz}) ;$ DC 28 V AC $230(50 / 60 \mathrm{~Hz})$ to special order
Current rating range	$0.1 \ldots 50 \mathrm{~A}$
Auxiliary circuit	$0.5 \mathrm{~A}, \mathrm{DC} 28 \mathrm{~V}$
Typical life	10,000 operations mechanical
	5,000 operations at I_{N}

Dielectric strength
(IEC 60664 and 60664A) test voltage
operating area
main to aux. circuit AC $1,500 \mathrm{~V}$

Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$	
Interrupting capacity I_{cn}	$\begin{aligned} & 0.1 \ldots . .2 .5 \mathrm{~A} \\ & 3 \ldots . .5 \mathrm{~A} \\ & 44 . .7 \mathrm{~A} \\ & 7.5 \ldots 50 \mathrm{~A} \\ & 35 . . .50 \mathrm{~A} \end{aligned}$	$15 \times I_{N}$ 250 A DC / 150 A AC 500 A 6,000 A DC / 1,000 A AC with auxiliary contact: 3,000 A DC / 1,000 A AC
Interrupting capacity (UL 1077)	$\begin{aligned} & I_{\mathrm{N}} \\ & 0.1 \ldots . .50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{U}_{\mathrm{N}} \\ & \mathrm{DC} 72 \mathrm{~V} \quad 5,000 \mathrm{~A} \end{aligned}$

(UL 1077) $\quad 0.1 \ldots 50 \mathrm{~A} \quad$ DC $72 \mathrm{~V} \quad 5,000 \mathrm{~A}$

Degree of protection operating area IP40
(IEC 60529/DIN 40050 terminal area IP00

Vibration	$10 \mathrm{~g}(55-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to VG 95210, sheet $19 / \mathrm{IEC} 60068-2-6$, test Fc
Shock	$50 \mathrm{~g}(11 \mathrm{~ms})$ to VG 95210, sheet 28/IEC 60068-2-27, test Ea
Corrosion	48 hours at 5% salt mist to VG 95210, sheet 2/IEC 60068-2-11, test Ka
Humidity	240 hours at 95% RH to VG 95210, sheet 7/IEC 60068-2-3, test C
Explosion	to VG 95210, sheet 10/MIL-STD-202, meth. 109
Mass	approx. 43 g without auxiliary contact approx. 46 g with auxiliary contact

Approvals

Authority	Voltage ratings	Current ratings
VG 95345 T21	DC 28 V	$0.1 \ldots .50 \mathrm{~A}$
QPL, Canada	DC 28 V	$0.5 \ldots 35 \mathrm{~A}$
UL, CSA	DC 72 V	$0.1 \ldots .50 \mathrm{~A}$
TÜV	DC 72 V	$0.1 \ldots 50 \mathrm{~A}$

Previous ordering codes:
482-N-MS = 482-G111-K1M1-A1S0-...A
482-MS $=482-G 212-K 1 M 1-A 1 S 0-\ldots . A$

辰E-TA゚ High Performance Thermal Circuit Breaker 482-

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop $(\mathbf{m V})$	Current rating (A)	Volt drop $(\mathbf{m V})$
0.1	16,000	5	350
0.2	8,000	7.5	230
0.5	3,000	10	<200
0.8	2,000	15	<200
1	1,500	20	<200
1.2	1,200	25	<200
1.5	1,000	30	<200
1.8	850	35	<200
2	800	40	<200
2.5	700	45	<200
3	600	50	<200
4	430		

Dimensions 482-G1...

482-G111-K1M1-A1S0 (VG 95345 T21)

482-G111-K1M1-A1S1 (VG 95345 T21)
482-G111-K1M1-A1S5

Dimensions 482-G2../-G6../-G7...

482-G212-K1M1-A1S0 (VG 95345 T21)

482-G600-K1M1-A1S0

482-G700-R1M1-Z0S0

Dimensions 482-G3...

482-G323-J1M1-B2 (MS 25 244)

482-G323-J2..-E3SOT

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Typical time/current characteristics

with auxiliary contact
with polarized auxiliary contact

Accessories (approved to VG 95345, part 23)

Splash cover /hex nut assembly with O ring (IP66 and IP67)
X 20080108 - nickel plated nut M12x1, transparent cover
X 20080103 - matt black finish nut M12x1, black cover

Splash cover black /hex nut assembly with O ring (IP54)
X 20080201 - nickel plated nut M12x1
X 20080202 - matt black finish nut M12x1

Actuator extension (black) to be fitted on the push button X 20080301

Accessories

Identification collar to be snapped on the push button
Y 30700401 black
Y 30700402 white
Y 30700403 red
Y 30700404 green Y 30700405 blue

Lock out ring to block the push button in OFF position Y 30700501 red
Y 30700502 black

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Single pole, miniaturised, aircraft style thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted, available in metric and US (MS 3320) configurations. Advanced two-chamber design contributes to fail-safe operation. Temperature compensated from -55° to $+125^{\circ} \mathrm{C}$, with optional auxiliary contacts, and fully approved for use on a wide range of aircraft and equipment. Full specification ensures suitability for the most demanding applications. For three pole version see type 583.

Typical applications

Aircraft systems and equipment (fixed wing and helicopters); other extra low voltage wiring applications; defence equipment; communications systems.

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop $(\mathbf{m V})$	Current rating (A)	Volt drop $(\mathbf{m V})$
1	750	10	190
2	520	15	190
2.5	400	20	200
3	360	25	170
4	350	30	160
5	260	35	150
7.5	230		

Approvals

Authority	Voltage ratings	Current ratings
LN 29886		
VG 95345 T06		
MS 3320, MS 3320 V		
QPL		
UL	AC $250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	$1 \ldots .25 \mathrm{~A}$
		$1 \ldots 35 \mathrm{~A}$

483-...
without auxiliary contact
with auxiliary contact

Technical data

Ordering information

Type No.

483 single pole, with temperature compensation
Mounting
G threadneck panel mounting, standard
L threadneck panel mounting, extended push button
V threadneck panel mounting, high vibration performance
Threadneck design
1 M12x1x6.4x8.8 dia. with mounting plate (aux. contact version)
2 15/32-32UN×6.4×7.8 dia. (without aux. contact)
3 MJ12x6.4x8.8 dia. (without aux. contact)
4 M12x1x6.4x8.8 dia. (without aux. contact)
5 7/16-32UN×6.4×7.8 dia. (without aux. contact)
6 M12x1x9.4×8.8 dia. (without aux. contact)
7 7/16-32 UNx6.4×7.8 dia.with mounting plate (aux.contact version)
8 as 483-G1...but with aluminium threadneck
(only mounting -G and aux. contact versions S1, S5)
Hardware for threadneck (washers)
0 without hardware
1 wave washer 12/15-mounted
2 mounted washer 12.1/17.2 - mounted
3 mounted washer 11.3/14.9 - mounted
(threadneck design 5,7 only)
4 mounted washer $12 / 15$ - mounted
5 tooth washer 12.1/17.2, bulk shipped
Hardware for threadneck (nuts)
0 without hardware
1 hex nut M12x1 (threadneck design 1, 4, 6 only)
2 hex nut 15/32-32UN (threadneck design 2 only)
3 hex nut 7/16-32UN (threadneck design 5, 7 only)
4 hex nut M12x1, aluminium, fitted (threadneck design 8 only)
5 hex nut MJ12x1 (only with threadneck design 3)
6 hex nut M12x1, bulk shipped (threadneck design 1,4,6)
Terminal design (main terminals)
K screws terminals with metric thread
1 K14 (M4, MJ4)
J screw terminals with inch thread
1 J14 (8-32UNC-2B)
2 J17 (8-32UNC-2B)
3 J25 (6-32UNC-2B)
Characteristic curve
M1 thermal, 1.15-1.38 I_{N}
Terminal screws
A Phillips screw M4x6
B Phillips screw 8-32UNC-2Ax6 (MS 51957-41)
C Phillips screw 6-32UNC-2Ax6 (MS 51957-26)
D slotted flat head screw M4x6
E hex screw with Phillips head 8-32UNC-3A-9.5
K hex screw with Phillips head 8-32UNC-3Ax7.6
L Phillips screw MJ4x6
M as "K" but bulk shipped
Z without accessories
Terminal washers
0 without lock washer
1 lock washer B4
2 lock washer 4.3 (MS 35338-137)
3 lock washer B4 and washer 4.4/9.5
4 lock washer 3.7 (MS 35338-136)
5 lock washer 4.3/9
Auxiliary contact
S0 without auxiliary contact
S1 with auxiliary contact (N / C) connector
to EN3155-016M2018, size 20
S5 with polarized auxiliary contact (N/C)
Barrier
Z without barrier (standard)
Colour of the push button
blank: black (standard) (e. g. 7.5)
A green (e. g. 7.5)
G green, marking to EN (e. g. 7 1/2)
N black, marking to EN (e. g. 7 1/2)
Current ratings
1... 35 A

483-G411-K1 M1-A 1 S0 Z .-5A ordering example

Ordering information for approved devices

483-G411-K1M1-A1SOZN

Metric threadneck M12x1 and terminal design -K14 (M4x6), listed by the German Materialamt der Bundeswehr to VG 95345 T06.

483-G111-K1M1-A1S1ZN

Metric threadneck M12x1 and terminal design -K14 (M4x6) and auxiliary contact -Si, listed by the German Materialamt der Bundeswehr to VG 95345 T06.

483-G533-J1M1-B2SOZN (MS 3320)

Threadneck size 7/16-32UNSx6.4 and terminal design -J14 (inch thread 8-32), approved to MS 3320

483-V533-J1M1-B2S0ZN (MS 3320-V)
Threadneck size 7/16-32UNSx6.4 and terminal design -J14 (inch thread 8-32), approved to MS 3320-V.

483-G533-J3M1-C4S0Z

Threadneck size 7/16-32UNSx6.4 and terminal design -J25 (inch thread 6-32), listed by the German Materialamt der Bundeswehr to VG 95345, part 6.

483-G814-K1M1-A1S1ZN
Aluminium threadneck M12x1x6.4×8.8 dia.

Internal connection diagrams

Dimensions 483-G411-K1M1-A1S0ZN (VG 95345 T06)

Dimensions 483-G533-J1M1-B2S0ZN (MS 3320)

Dimensions 483-G111-K1M1-A1S1ZN (VG 95345 T06)

Mounting

Other main terminal and threadneck designs

Accessories

Identification collar to be snapped on the push button

Typical time/current characteristics

Accessories

Splash cover/hex nut assembly with \mathbf{O} ring (IP66 and IP67)
(approved to VG 95345, T23)
$\times 20080108$ nickel plated nut, transparent cover
X 20080103 matt black finish nut, black cover
X 20080109 matt black finish nut 7/16-32, black cover

Splash cover/hex nut assembly with O ring (IP54)
(approved to VG 95345, T23)
X 20080201 nickel plated nut
X 20080202 matt black finish nut

Actuator extension (black) to be fitted on the push button (approved to VG 95345, T23)
X 20080301

Lock out ring to block the push button in OFF position Y 30700501 red
Y 30700502 black

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

居E-ANigh Performance Thermal Circuit Breaker 4120-...

Description

Single pole, miniaturised thermal circuit breaker with trip-free mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). Threadneck panel mounted, temperature-compensated, with optional auxiliary contacts. Fully approved for commercial aircraft and similar requirements.

Typical applications

Extra low voltage wiring systems on all types of vehicles for land, sea and air.

Ordering information

Technical data

Voltage rating	AC $115 \mathrm{~V}(400 \mathrm{~Hz})$; DC 28 V
Current rating range	1...25 A (0.5 A upon request)
Auxiliary circuit	$1 \mathrm{~A}, \mathrm{DC} 28 \mathrm{~V}$ (0.5 A upon request)
Typical life	20,000 operations mechanical, or 5,000 operations at $1 \times \mathrm{I}_{\mathrm{N}}$
Ambient temperature	$-55^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C} \quad\left(-67 \ldots+257{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength (IEC 60664 and 60664A) operating area main to aux. circuit	test voltage AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega$ (DC 500 V)
Interrupting capacity I_{cn}	AC $115 \mathrm{~V}(400 \mathrm{~Hz}):$ $1 \ldots 4 \mathrm{~A}$ $1,000 \mathrm{~A}$ $5 \ldots 25 \mathrm{~A}$ $2,000 \mathrm{~A}$ DC $28 \mathrm{~V}:$ $1 \ldots 25 \mathrm{~A}$ $6,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration (sinusoidal)	$10 \mathrm{~g}(57-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(5-57 \mathrm{~Hz})$ to ISO 7137, EN 2350 para. 5.3.1
Vibration	1...2.5 A: $0.04 \mathrm{~g}^{2} / \mathrm{Hz} \pm 1,5 \mathrm{~dB} ; 7.3 \mathrm{~g}$ eff 3... $20 \mathrm{~A}: 0.06 \mathrm{~g}^{2} / \mathrm{Hz} \pm 1,5 \mathrm{~dB} ; 9 \mathrm{~g}$ eff to ISO 7137, EN 2350 para. 5.3.1
Acceleration	17 g , to ISO 2669, EN 2350 para. 5.3.3
Shock	50 g (11 ms), to ISO 7137, EN 2350 para. 5.3.2
Corrosion	48 hours at 5 \% salt mist to ISO 7137, EN 2350 para. 5.4.2
Humidity	240 hours at 95 \% RH, to ISO 7137, EN 2350 para. 5.4.3
Explosion	to VG 95210, sheet 10
Altitude	$\leq 22,000 \mathrm{~m}$ above sea level
Mass	approx. 20.6 g with terminal screws, without - Si approx. 24.6 g with terminal screws, with -Si

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop $(\mathbf{m V})$	Current rating (A)	Volt drop $(\mathbf{m V})$
1	1100	7.5	250
2	550	10	230
2.5	460	15	200
3	440	20	190
4	380	25	190
5	260		

Approvals (configurations)

Authority	Voltage ratings	Current ratings
EN 2495		
EN 3773		
EN 2995		
MS 3320		
QPL		
VG 95345 T06	DC 28 V; AC 115 V	$0.5 \ldots 20 \mathrm{~A}$
BWB (to VG 95345, part 6)	$0.5 \ldots 25 \mathrm{~A}$	

Dimensions 4120-...

4120-G214-J1M1-B2S0ZN (MS 3320)

Dimensions 4120-G1..

4120-G111-K1M1-A1S0ZN (EN2495-...M) (VG95345 T06)

4120-G11.-J2M1-K5SOZN (EN2495-...U, EN3773-004 D...)

Mounting holes

Other terminal designs

Internal connection diagram

Typical time/current characteristics

Accessories (approved to VG 95 345, part 23)

Splash cover/hex nut assembly with O ring (IP66 and IP67)
X 20080108 nickel plated nut, transparent cover
X 20080103 matt black finish nut, black cover
X 20080109 matt black finish nut 7/16-32, black cover

Actuator extension (black) to be fitted on the push button X 20080301

Accessories

Identification collar to be snapped on the push button
Y 30700401 black
Y 30700402 white
Y 30700403 red
Y 30700404 green
Y 30700405 blue

Lock out ring to block the push button in OFF position Y 30700501 red
Y 30700502 black

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

ZE-TAO High Performance Thermal Circuit Breaker 4140-...

Description

Single pole, thermal circuit breaker with trip-free mechanism, push/pull on/off manual actuation (M-type TO CBE to EN 60934) and temperature compensation. An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted, available in metric and US configurations. The robust design makes type 4140 suitable for extremely harsh conditions.

Typical applications

Land vehicles, aircraft, watercraft, special vehicles.

Ordering information

Technical data

Voltage rating	AC $115 \mathrm{~V}(400 \mathrm{~Hz}$); DC 28 V
Current rating range	20... 50 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	5,000 operations mechanical and 2,500 operations at I_{N}
Ambient temperature	$-55 \ldots+125^{\circ} \mathrm{C}\left(-67 \ldots+257{ }^{\circ} \mathrm{F}\right)$
Temperature compensation	$-55 \ldots+9{ }^{\circ} \mathrm{C}\left(-67 \ldots+194{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength operating area main to aux. circuit	test voltage AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	AC 115 V (400 Hz): 1,500 A DC $28 \mathrm{~V}: 4,000 \mathrm{~A}$
Degree of protection (IEC 60529)	operating area IP40 terminal area IP00
Vibration (sinusoidal)	$\begin{aligned} & \pm 0.76 \mathrm{~mm}(5-80 \mathrm{~Hz}) \\ & 10 \mathrm{~g}(80-500 \mathrm{~Hz}), \\ & 5 \mathrm{~g}(500-2000 \mathrm{~Hz}) \end{aligned}$ $\text { to EN } 2350 \text { para 5.3.1 and ISO } 7137$
Vibration (random)	$0.04 \mathrm{~g}^{2} / \mathrm{Hz}(40-500 \mathrm{~Hz})$ $5.8 \mathrm{~g} \mathrm{rms}(10-2000 \mathrm{~Hz})$ to ISO 7137
Acceleration	17 g , to EN 2350, para 5.3.3 and ISO 2669
Shock	50 g (11 ms), to EN 2350 para 5.3.2 and ISO 7137
Corrosion	48 hours at 5% salt mist to EN 2350 para 5.4.2 and ISO 7137
Humidity	48 hours at 95 \% RH, to EN 2350 para 5.4.3 and ISO 7137
Altitude	$\leq 15,000 \mathrm{~m}$ above sea level
Mass	ca. 57 g with accessories and without auxiliary contact ca. 60 g with accessories and with auxiliary contact

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop per pole (mV)
20	150
25	150
30	150
35	150
40	120
45	120
50	120

Approvals

ASNE 0732-005 / prEN 3661-005
NSA 931321 / prEN2794-004

Dimensions

4140-G112-J1M1-K5S0TN-..

tightening torque max. 4 Nm

to FED-STD-H28/2A

Internal connection diagrams

Typical time/current characteristics

Accessories

Splash cover/hex nut assembly with O ring (IP66 and IP67)
X 20080115 black chromated nut M12x0.75x6, black cover
Splash cover/hex nut assembly with O ring (IP66 and IP67) X 20080116 black chromated nut 7/16-32UNx6, black cover

Actuator extension (black) to be fitted on the push button X 20080301 (approved to VG 95345, part 23)

Identification collar to be snapped on the push button
Y 30700401 black
Y 30700402 white
Y 30700403 red
Y 30700404 green
Y 30700405 blue

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single pole remote control circuit breaker (RCCB), temperature compensated, either with or without auxiliary contacts, and featuring a bimetal actuator which trips the circuit breaker mechanism within a specified time under overcurrent conditions. The switching contact latching system is operated by a bi-stable linear motor controlled by electronic circuitry incorporated within the device. Remote control is achieved through the use of a conventional single pole manually operated aircraft style thermal circuit breaker which connects the control input of the RCCB to ground.
With the control circuit breaker (ICU) in the ON position, the RCCB will switch on. When the control circuit breaker is switched off, the RCCB will change to the OFF condition. If power is applied to a previously de-energised RCCB, the device will adopt the same switching status as the control circuit breaker.
If the RCCB trips thermally in the event of a load circuit fault, the electronic circuitry will also cause the control circuit breaker to trip, thereby providing a visual indication through the position of the circuit breaker actuator.
Approved to MIL-PRF-83383.

Typical applications

Aircraft electrical systems and equipment, and other high performance applications.

Ordering information

Type No.				
4930 single pole				
	Variation			
	01 standard, with auxiliary contacts			
	02 with modified terminal barrier and auxiliary contacts			
	03 standard, without auxiliary contacts			
	04 with modified terminal barrier but without auxiliary contacts			
	Current ratings			
	5... 100 A			
4930-01-5 A ordering example				
$\mathrm{I}_{\mathrm{N}} / \mathrm{A}$	E-T-A part number	MIL part number	E-T-A part number	MIL part number
5	4930-01-5A	M83383/02-01	4930-03-5A	M83383/01-01
7.5	4930-01-7.5A	M83383/02-02	4930-03-7.5A	M83383/01-02
10	4930-01-10A	M83383/02-03	4930-03-10A	M83383/01-03
15	4930-01-15A	M83383/02-04	4930-03-15A	M83383/01-04
20	4930-01-20A	M83383/02-05	4930-03-20A	M83383/01-05
25	4930-01-25A	M83383/02-06	4930-03-25A	M83383/01-06
35	4930-01-35A	M83383/02-07	4930-03-35A	M83383/01-07
40	4930-01-40A	M83383/02-08	4930-03-40A	M83383/01-08
50	4930-01-50A	M83383/02-09	4930-03-50A	M83383/01-09
60	4930-01-60A	M83383/02-10	4930-03-60A	M83383/01-10
75	4930-01-75A	M83383/02-11	4930-03-75A	M83383/01-11
80	4930-01-80A	M83383/02-12	4930-03-80A	M83383/01-12
100	4930-01-100A	M83383/02-13	4930-03-100A	M83383/01-13

Approvals

MIL-PRF-83383

Technical data ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{e}}=\mathrm{DC} 28 \mathrm{~V}$ or $\mathrm{AC} 115 \mathrm{~V} / 400 \mathrm{~Hz}$)

Operating data LINE	(see also MIL-PRF-83383)
Voltage ratings U_{e} (operating voltage range)	AC 115 V 400 Hz (AC 104... 126 V); DC 28 V (DC 18... 36 V)
Current rating range I_{N}	5...100 A (see ordering information)
Bias current	typically 2.5 mA at DC 28 V typically 25 mA at AC 115 V
Switching current/ switching period for internal linear motor	typically $3.4 \mathrm{~A} / 28 \mathrm{~ms}$ at DC typically $2.8 \mathrm{~A} / 17 \mathrm{~ms}$ at AC
Optical indication ON/OFF	status indicator (near terminal A1)
Load circuit LOAD	
Current rating range I_{N}	5... 100 A (see ordering information)
Interrupting capacity	DC 28 V : 6,000 A AC $115 \mathrm{~V} 400 \mathrm{~Hz}: 3,600 \mathrm{~A}$
Voltage drop at I_{N}	see table 1 (standard current ratings and typical voltage drop values)
Overload disconnection	see table 2 (typical time/current characteristics)
Trip limits	see table 2
Control circuit ICU	
ICU	Indicator/Control Unit thermal circuit breaker 0.5 A
Trigger current for ICU ("TRIP FREE"-mode) / duration	approx. 3.2 A / 5 s max
Control voltage $\mathrm{U}_{\mathrm{ICU}}$ RCCB "OFF" (ICU open) RCCB "ON" (ICU closed)	Limits: $\begin{aligned} & \mathrm{U}_{\text {ICU }}>\text { typ. } 2 \mathrm{~V} \\ & \left(>1.5 \mathrm{~V} \text { between }-54 \ldots+71^{\circ} \mathrm{C} /\right. \\ & \left.-65 \ldots+160{ }^{\circ} \mathrm{F}\right) \\ & \mathrm{U}_{\text {ICU }} \text { < typ. } 0.6 \mathrm{~V} \\ & \left(<0.2 \mathrm{~V} \text { between }-54 \ldots+71^{\circ} \mathrm{C} /\right. \\ & \left.-65 \ldots+160^{\circ} \mathrm{F}\right) \end{aligned}$
Control current $\mathrm{I}_{\text {ICU }}$	typically 0.4 mA
Additional control units	one relay contact or one ON/OFF switch is applicable (see application note ICU)
ON/OFF-cycling time (e. g. additional relay contact in ICU circuit)	$\mathrm{ON}>80 \mathrm{~ms} / \mathrm{OFF}>80 \mathrm{~ms}$
Signal output AUX	
Auxiliary contacts	change over contacts S 1 - S2 is open, when RCCB main contact is open
Voltage ratings	DC 28 V , AC $115 \mathrm{~V}(400 \mathrm{~Hz}$)
Current ratings	resistive load: $3 \mathrm{~A} /$ inductive load 1.5 A lamp load: 0.5 A

Technical data ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{e}}=\mathrm{DC} 28 \mathrm{~V}$ or AC $\left.115 \mathrm{~V} / 400 \mathrm{~Hz}\right)$

General data

Typical life endurance	50,000 operations at I_{N} (inductive or resistive)
Ambient temperature	$-54 \ldots+71^{\circ} \mathrm{C}\left(-65 \ldots+160{ }^{\circ} \mathrm{F}\right)$
Dielectric strength (IEC 60664 and 60664A) between main terminals main terminal to mounting area	$\frac{\text { test voltage }}{\text { AC } 1,500 \mathrm{~V}}$ AC 1,500 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Vibration (sinusoidal)	$10 \mathrm{~g}(55-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(10-55 \mathrm{~Hz})$ to MIL-STD 202, method 204, condition C
Vibration (random)	$10-2000 \mathrm{~Hz}$ $0.15 \mathrm{~g}^{2} / \mathrm{Hz}$, rms value 13.5 g ; $5 \mathrm{~h} /$ axis loaded with $0.9 \mathrm{I}_{\mathrm{N}}$

25 g (11 ms, half sinosoidal) to MIL-STD 202, method 213, condition J ISO 7137 (RTCA/DO-160 C, part 7)

Corrosion	48 hours at 5 \% salt mist
to MIL-STD 202, method 101, condition B	

Humidity	240 hours at 95 \% RH to MIL-STD 202, method 106/ISO 7137 (RTCA/DO-160 C, part 6, category B)
Sand and dust	to MIL-STD 202, method 110, test condition A
Fungus	to MIL-STD 810 D, method 508.3, 28 days
Altitude	$\leq 15,000 \mathrm{~m}$ above sea level
EMI requirements	to MIL-STD 461, class 1 D
Mass	$5 \ldots . .25 \mathrm{~A}$ approx. 315 g $35 . .100 \mathrm{~A}$ approx. 319 g
Dimensions	max. $82.55 \times 31.9 \times 108.2 \mathrm{~mm}$ (max. $3.25 \times 1.256 \times 4.26$ inch)
Terminals, connections	see table 3

Table 1
Standard current ratings and typical voltage drop values

Current ratings (A)	Voltage drop at rated current $(\mathbf{m V})$	Current ratings (A)	Voltage drop at rated current (mV)
5	450	40	225
7.5	360	50	225
10	347	60	225
15	225	75	225
20	225	80	225
25	225	100	225
35	225		

Table 2
Typical time/current characteristics

Table 3
Terminals, connections

Current rating (A)	$\mathbf{5 . . . 2 5}$	$\mathbf{3 5 . . . 1 0 0}$
Thread A	$0.190-32$ UNF-2A	$0.250-28$ UNF-2A
Mounting torque	2 Nm	4.1 Nm
B (mm/in.)	$12.7 / .500$	$15.5 / .610$
$\mathrm{C} \mathrm{(mm/in)}$.	$12.7 / .500$	$15.5 / .610$
Nut	AN315-3R	AN315-4R
Lock washer	MS 35338-43	MS 35338-44
Flat washer	NAS 1149F0322P	NAS 1149F0463P

FETAO Remote Control Circuit Breaker 4930 (RCCB)

Dimensions

Type 4930-01 (M 83383/02)
-03 (M 83383/01)

Type 4930-02/-04

socket for contact pins
M 39029/1-100
or M39029/1-101
mounting flanges mate as shown

Terminal configuration

Pin no.	Terminal	Description
A1	LINE	power supply DC 28 V, AC $115 \mathrm{~V} / 400 \mathrm{~Hz}$
A2	LOAD	load is connected to ground GND
3	ICU	control input, when grounded, RCCB $=$ "ON"
4	Backup power	AC $115 \mathrm{~V} / 400 \mathrm{~Hz}$ (same AC phase as LINE) or DC 28 V
5A, 5B	GND	ground potential
6		not connected auxiliary change over contacts
S1, S2, S3	AUX	

Internal Connection diagrams

Type 4930-01/-02 (with auxiliary contacts)

Type 4930-03/ -04 (without auxiliary contacts)

Application note (ICU)

Description

Three pole, aircraft style thermal circuit breaker with trip-free mechanism and push/pull on/off manual actuation. An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted, available in metric and US configurations. Temperature compensated, with optional auxiliary contacts. The robust design is well suited to extremely harsh conditions. In the event of an overload in one, two or three phases all three poles will be disconnected.

Typical applications

Land vehicles, aircraft, watercraft, special vehicles.

Ordering information

Technical data

Voltage rating	3 AC $200 \mathrm{~V}(400 \mathrm{~Hz}$); DC 28 V
Current rating range	20... 50 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	5,000 operations mechanical and 2,500 operations at I_{N}
Ambient temperature	$-55 \ldots+125^{\circ} \mathrm{C}\left(-67 \ldots+257{ }^{\circ} \mathrm{F}\right)$
Temperature compensation	$-55 \ldots+90^{\circ} \mathrm{C} \quad\left(-67 \ldots+194^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength operating area pole/pole main to aux. circuit	test voltage AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	2,000 A
Degree of protection (IEC 60529)	operating area IP40 terminal area IP00
Vibration (sinusoidal)	$\begin{aligned} & \pm 0.76 \mathrm{~mm}(5-80 \mathrm{~Hz}) \\ & 10 \mathrm{~g}(80-500 \mathrm{~Hz}), \\ & 5 \mathrm{~g}(500-2000 \mathrm{~Hz}) \end{aligned}$ to EN 2350 Abschn. 5.3.1 and ISO 7137
Vibration (random)	$0.04 \mathrm{~g}^{2} / \mathrm{Hz}(40-500 \mathrm{~Hz})$ $5.8 \mathrm{~g} \mathrm{rms}(10-2000 \mathrm{~Hz})$ to ISO 7137
Acceleration	17 g , to EN 2350, para 5.3.3 and ISO 2669
Shock	50 g (11 ms), to EN 2350 para 5.3.2 and ISO 7137
Corrosion	48 hours at 5 \% salt mist to EN 2350 para 5.4.2 and ISO 7137
Humidity	48 hours at 95 \% RH, to EN 2350 para 5.4.3 and ISO 7137
Altitude	$\leq 15,000 \mathrm{~m}$ above sea level
Mass	ca. 144 g with accessories and without auxiliary contact ca. 150 g with accessories and with auxiliary contact

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop per pole (mV)
20	150
25	150
30	150
35	150
40	120
45	120
50	120

Approvals

ASNE 0459
NSA 931323 / prEN2665-004
ASNE 0733-005 / prEN 3662-005
ASNE 0733-006 / prEN 3662-006

Dimensions

5140-G132-J1M1-K5S0TN (NSA 931 323; prEN 2665-004)

5140-G132-J1M1-K5S5TG (ASNE 0733-005; prEN 3662-005)

$$
\text { tightening torque max. } 4 \mathrm{Nm}
$$

首ETA゚ High Performance Thermal Circuit Breaker 5140

Dimensions

5140-G132-J2M1-K5S0TN (ASNE 0459)

5140-G232-J3M1-K5S5TG (ASNE 0733-006; prEN 3662-006)
tightening torque max. 4 Nm

Internal connection diagrams

without auxiliary contact

with auxiliary contact
with polarized auxiliary contact

Typical time/current characteristics

Accessories

Splash cover/hex nut assembly with O ring (IP66 and IP67)
X 20080115 black chromated nut M12x0.75x6, black cover
Splash cover/hex nut assembly with O ring (IP66 and IP67)
X 20080116 black chromated nut 7/16-32UNx6, black cover

Actuator extension (black) to be fitted on the push button X 20080301 (approved to VG 95345, part 23)

Identification collar to be snapped on the push button
Y 30700401 black
Y 30700402 white
Y 30700403 red
Y 30700404 green
Y 30700405 blue

FETRAO High Performance Thermal Circuit Breaker 583-...

Description

Three pole, miniaturised, aircraft style thermal circuit breaker with tease-free, trip-free, snap action mechanism and push/pull on/off manual actuation (M-type TO CBE to EN 60934). An indicator band on the push button clearly shows the tripped/off position. Threadneck panel mounted, available in metric and US (AS 14154) configurations. Advanced two-chamber design minimises contact contamination to provide fail-safe operation. Temperature compensated with optional auxiliary contacts, and fully approved for use on a wide range of aircraft and equipment. For single pole version see type 483.

Typical applications

Aircraft systems and equipment (fixed wing and helicopters); other extra low voltage wiring applications; defence equipment; communications systems.

Standard current ratings and typical volt drop values

Current rating (A)	Volt drop per pole (mV)	Current rating (A)	Volt drop per pole (mV)
1	750	7.5	230
2	520	10	190
2.5	400	15	190
3	360	20	200
4	350	25	170
5	260	30	160

Approvals

Approvals:

LN 29887
VG 95345, part 11
prEN 2996
AS 14154
QPL
 without auxiliary contact

with auxiliary contact

Technical data

Voltage rating	3 AC $200 \mathrm{~V}(400 \mathrm{~Hz})$; DC 28 V
Current rating range	1... 30 A
Auxiliary circuit	0.5 A, DC 28 V
Typical life	20,000 operations mechanical 10,000 operations at $\mathrm{I}_{\mathrm{N}}(\leq 25 \mathrm{~A})$ 4,000 operations at $\mathrm{I}_{\mathrm{N}}(30 \mathrm{~A})$
Ambient temperature	$\begin{aligned} & -55 \ldots+125^{\circ} \mathrm{C}\left(-67 \ldots+257^{\circ} \mathrm{F}\right) \leq 15 \mathrm{~A} \\ & -55 \ldots+90^{\circ} \mathrm{C}\left(-67 \ldots+194^{\circ} \mathrm{F}\right)>15 \mathrm{~A} \end{aligned}$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 1.5 kV 3
Dielectric strength (IEC 60664 and 60664A) operating area pole/pole main to aux. circuit	test voltage AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$ AC $1,500 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Interrupting capacity I_{cn}	$3 \mathrm{AC} 200 \mathrm{~V}(400 \mathrm{~Hz}):$ $\leq 4 \mathrm{~A}$ $1,000 \mathrm{~A}$ 5 A $2,000 \mathrm{~A}$ $7.5 \ldots 25 \mathrm{~A}$ $2,500 \mathrm{~A}$ 30 A $1,500 \mathrm{~A}$ DC $28 \mathrm{~V}:$ $1 \ldots .25 \mathrm{~A}$ $6,000 \mathrm{~A}$ 30 A $4,000 \mathrm{~A}$
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration (sinusoidal)	$10 \mathrm{~g}(57-2000 \mathrm{~Hz}), \pm 0.76 \mathrm{~mm}(5-57 \mathrm{~Hz})$ to VG 95210, sheet 19, IEC 60068-2-6, test Fc, ISO 7137
Vibration (random)	$16.4 \mathrm{~g} \mathrm{rms}, 0.2 \mathrm{~g}^{2} \mathrm{~Hz} \pm 1.5 \mathrm{~dB}$, to VG 95210, sheet 29, IEC 60068-2-6, test Fc, ISO 7137
Acceleration	17 g , to ISO 2669
Shock	50 g (11 ms), to VG 95210, sheet 28, IEC 60068-2-27, test Ea, ISO 7137
Corrosion	96 hours at 5% salt mist 48 hours at 20% salt mist to VG 95210, sheet 2, IEC 60068-2-11, test Ka, ISO 7137
Humidity	240 hours at 95 \% RH, to VG 95210, sheet 7, IEC 60068-2-3, test C/ISO 7137
Explosion	to VG 95210, sheet 10, MIL-STD-202, meth. 109
Altitude	$\leq 25,000 \mathrm{~m}$ above sea level
Mass Mass reduction throu	max. 67 g with auxiliary contact max. 63 g without auxiliary contact aluminium threadneck approx. 3 g

Ordering information

Type No

583 three pole, with temperature compensation Mounting
G threadneck panel mounting
Threadneck design
$1 \mathrm{M} 12 \times 1 \times 6.4 \times 8.8$ dia. with mounting plate (aux. contact version)
2 15/32-32UNx6.4×7.8 dia. (only without aux. contact)
$3 \mathrm{MJ12x1} \mathrm{\times 6.4} \mathrm{\times 8.8}$ dia. (only without aux. contact) $4 \mathrm{M} 12 \times 1 \times 6.4 \times 8.8$ dia. (only without aux. contact)
5 7/16-32UNx6.4×7.8 (only without aux. contact)
$6 \mathrm{M} 12 \times 1 \times 9.4 \times 8.8$ dia. (without aux. contact)
7 7/16-32 UNx6.4×7.8 dia. with mounting plate (aux.contact version) $8 \mathrm{M} 12 \times 1 \times 6.4 \times ø 8.8$ with mounting plate, aluminium threadneck 9 M12x1x6.4xø8.8, aluminium threadneck

Hardware for threadneck (washers)
0 without hardware
1 corrugated washer 12/15, fitted
2 serrated lock washer 12.1/17.2, fitted
3 serrated lock washer 11.3/14.9, fitted
4 serrated lock washer 12/15, fitted
Hardware for threadneck (nuts)
0 without hardware
1 hex nut M12x1
2 hex nut 15/32-32UN
3 hex nut 7/16-32UN
5 hex nut MJ12x1 (only with threadneck design 3)
Terminal design (main terminals)
K screw terminals with metric thread

K14 (M4, MJ4)

J screw terminals with inch thread
1 J14 (8-32UNC-2B)
2 J17 (8-32UNC-2B)
3 J25 (6-32UNC-2B)
Characteristic curve
M1 thermal, 1.15-1.38 IN
Terminal screws
A Phillips screw M4x6
B Phillips screw 8-32UNC-2Ax6 (MS 51957-41)
C Phillips screw 6-32UNC-2Ax6 (MS 51957-41)
D slotted flat head screw M4x6
E hex screw with Phillips head 8-32UNC-3Ax9.5
K hex screw with Phillips head 8-32UNC-3Ax7.6
L Phillips screw MJ4x6
Z without accessories
Terminal washers
0 without lock washer
1 lock washer B4
2 lock washer 4.3 (MS 35338-137)
3 lock washer B4 and washer 4.4/9.5
4 lock washer 3.7 (MS 35338-136)
5 lock washer 4.3/9
Auxiliary contact
S0 without auxiliary contact
S1 with auxiliary contact (N/C) (connector
to EN 3155-016M2018, size 20)
S5 with polarized auxiliary contact (N/C)
Barrier
T barrier 25.5 mm wide,
37.7 mm long (-S0 only)

U barrier 19.5 mm wide, 37.7 mm long
V barrier 25.5 mm wide, 37.7 mm long, colour marking between the terminals (-S0 only)
X barrier 19.5 mm wide, 34.1 mm long
Colour of the push button (blank) black (standard) (e.g. 7.5) A green (e.g. 7.5) G green to EN (e.g. $71 / 2$) $\mathrm{N} \quad$ black to EN (e.g. $71 / 2$)

Current ratings
$1 . .30 \mathrm{~A}$

Ordering information for approved devices

583-G411-K1M1-A1SOTN (583-96-TC-K14)
Metric threadneck M12x1 and terminal design -K14 (M4x6), listed by the German Materialamt der Bundeswehr to VG 95345 T11.

583-G111-K1M1-A1S1UN

Metric threadneck M12x1 and terminal design -K14 (M4×6) with auxiliary contact -Si, listed by the German Materialamt der Bundeswehr to VG 95345 T11.

583-G533-J1M1-B2SOXN (AS 14154)
Threadneck size 7/16-32UNS×6.4 and terminal design -J14 (inch thread 8-32), approved to AS 14154.

Dimensions 583-G411-K1M1-A1S0TN (VG 95345 T11)

Dimensions 583-G533-J1M1-B2S0XN (AS14154)

Dimensions 583-G111-K1M1-A1S1UN (VG 95345 T11)

Other main terminal and threadneck designs

Internal connection diagrams

Typical time/current characteristics

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Accessories

Splash cover/hex nut assembly with O ring (IP66 and IP67)
(approved to VG 95345, part 23)
X 20080108 nickel plated nut, transparent cover
X 20080103 matt black finish nut, black cover
X 20080109 matt black finish nut 7/16-32, black cover

Splash cover black/hex nut assembly with O ring (IP54)
only for threadneck nut M12 (to VG 95345, sheet 23)
X 20080201 nickel plated nut
X 20080202 matt black finish nut

Actuator extension (black) to be fitted on the push button (approved to VG 95345, T23)
X 20080301

Identification collar to be snapped on the push button

Lock out ring to block the push button in OFF position Y 30700501 red
Y 30700502 black

를(A Isolation Switches 911/912/913-

Description

Single, two and three pole isolators to EN 60947 / IEC 60947 with toggle actuation. Designed for rail, panel or surface mounting. Options include auxiliary contacts and remote electrical disconnection.
For circuit breaker versions see types 410, 520, 530.

Typical applications

Control systems, industrial equipment.

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Standard current ratings and typical internal resistance values

Current rating (A)
Internal resistance (Ω)

32	≤ 0.002	per pole
63	≤ 0.002	per pole
125	≤ 0.002	per pole

Technical data

Voltage rating	AC 240 V; 3 AC 415 A; 3 AC 500 V; DC 110 V
Current rating range	$32 \mathrm{~A}, 63 \mathrm{~A}, 125 \mathrm{~A}$
Auxiliary contact rating	6 A at AC 240 V or DC 28 V ; 1 A at DC 110 V
Electrical remote disconn operating voltage operating current max. pulse time switching time	ction (FA) DC 12 V or DC 24 V approx. 18 A or 12 A $10 \mathrm{~ms}<\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ms} / \mathrm{t}_{\text {OFF }}>10 \mathrm{~s}$ $<20 \mathrm{msec}$
Typical life	10,000 operations at I_{N} 20,000 operations mechanical
Ambient temperature	$-40 \ldots+75{ }^{\circ} \mathrm{C}\left(-40 \ldots+167{ }^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 6 kV 3

Dielectric strength

(IEC 60664 and 60664A)	test voltage
operating area	AC 3,300 V
pole/pole	AC $3,300 \mathrm{~V}$
main to aux. circuit	AC 2,200 V
aux. circuit 11-12 to 13-14	AC 1,000 V
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Short-circuit protection	back up fuse max. 125 A
Degree of protection (IEC 60529/DIN 40050)	operating area IP40 terminal area IP00
Vibration	$5 \mathrm{~g}(57-200 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc 10 frequency cycles/axis
Shock	$\begin{aligned} & 25 \mathrm{~g}(11 \mathrm{~ms}) \\ & \text { to IEC } 60068-2-27 \text {, test Ea } \end{aligned}$
Corrosion	96 hours at 5 \% salt mist to IEC 60068-2-11, test Ka
Humidty	240 hours at 95 \% RH to IEC 60068-2-3, test Ca
Mass	approx. 220 g single pole approx. 440 g double pole approx. 660 g three pole

Dimensions

Internal connection diagrams

911 911-...-FA

912-K

recommended link
recommended
for FA coil protection pre-wired at the factory

913-K

Mounting method

Surface mounting
suffix: -1
Rail mounting
(EN 50022-35x7.5)
suffix: -2

Rail mounting
Panel mounting
(EN 50035-G32)
suffix: -3

suffix: -4

Mounting brackets - surface mounting
suffix: -5

Covers, labels, sealing screws etc. can be fitted on the front of the housing.

Auxiliary contact arrangement with multipole switches

Accessories

Terminal insulation cover
X 21170501
(1 set = 2 pcs per pole)

protected against brush contact *

[^21]
Accessories

For series $911 \leq 125$ A
Water splash cover translucent with fixing plate
and screws (IP54)
X 21111801

Water splash cover translucent with fixing plate and screws (IP54)
X 21111901

mounting holes

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Single or two pole isolation switches to IEC 60947/EN 60947 with toggle actuation. Options include auxiliary contacts, a moulded flame retardant enclosure for added environmental protection (with or without rotary action external operating knob), and remote operation - disconnection only, or disconnection and re-connection. A version for use in hazardous areas (e.g. petroleum and chemical tankers) is available to special order.

Typical applications

Vehicles of all types (including tankers), boats, battery powered systems.

Ordering information

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required

Technical data

Voltage rating	DC 12 V ; DC 24 V
Current rating range	240 A type 921, single pole 120 A type 922, double pole
Auxiliary contact rating	6 A at DC 24 V 1 A at DC 110 V
Electrical remote disconn operating voltage operating current max. pulse time switching time	ction (-FA): DC 12 V or DC 24 V approx. 18 A or approx. 12 A $10 \mathrm{~ms}<\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ms} / \mathrm{t}_{\mathrm{OFF}}>10 \mathrm{~s}$ $<20 \mathrm{~ms}$
Electrical remote re-conn operating voltage operating current max. pulse time switching time	tion (-FE): DC 12 V or DC 24 V approx. 30 A or approx. 15 A $0.1 \mathrm{~s}<\mathrm{t}_{\mathrm{ON}}<1.2 \mathrm{~s} / \mathrm{t}_{\mathrm{OFF}}>60 \mathrm{~s}$ $<100 \mathrm{~ms}$
Typical life	10,000 operations at I_{N} 20,000 operations mechanical
Ambient temperature	$-40 \ldots+75^{\circ} \mathrm{C}\left(-40 \ldots+167^{\circ} \mathrm{F}\right)$
Insulation co-ordination (IEC 60664 and 60664A)	rated impulse pollution withstand voltage degree 6 kV 3
Dielectric strength (IEC 60664 and 60664A) operating area pole/pole main to aux. circuit aux. circuits 11-12 to 13-14	test voltage AC $3,300 \mathrm{~V}$ AC $3,300 \mathrm{~V}$ AC 2,200 V AC $1,000 \mathrm{~V}$
Insulation resistance	> $100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$
Switching capacity	Type 921 Type 922 $2,500 \mathrm{~A}$ for 1 s at $+23^{\circ} \mathrm{C}$ $1,500 \mathrm{~A}$ for 1 s at $+23^{\circ} \mathrm{C}$ 600 A for 1 min at $+23^{\circ} \mathrm{C}$ 600 A for 30 s at $+23^{\circ} \mathrm{C}$ 600 A for 2 min at $-23^{\circ} \mathrm{C}$ 600 A for 1 min at $-23^{\circ} \mathrm{C}$ 600 A for 90 s at $0^{\circ} \mathrm{C}$ 600 A for 45 s at $0^{\circ} \mathrm{C}$
Degree of protection (IEC 529/DIN 40050)	operating area IP40 terminal area IPOO IP54 with enclosure -B.. IP65 with enclosure -C..
Vibration	$\begin{aligned} & 5 \mathrm{~g}(57-200 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz}) \\ & \text { to IEC } 60068-2-6 \text {, test Fc } \\ & 10 \text { frequency cycles/axis } \end{aligned}$
Shock	25 g (11 ms), to IEC 60068-2-27, test Ea
Corrosion	96 hours at 5% salt mist to IEC 60068-2-11, test Ka
Humidity	240 hours at 95% RH, to IEC 60068-2-3, test Ca
Mass	approx. 900 g base unit + approx. 400 g remote disconnection + approx. 100 g remote re-connection + approx. 750 g B housing + approx. $1,000 \mathrm{~g} \mathrm{C}$ housing

둘ㄹTA Battery Isolation Switches 921/922

Moulded enclosure IP 65 -C3

Moulded enclosure IP 65 -C32

slotted screw plug, tightening torque $2 \mathrm{Nm} \pm 0,2 \mathrm{Nm}$

Moulded enclosure IP54 -B3 1-pole

921-K60-...-FA

Dimensions types 922

922-K72-5-...-FC

922-K61-5-...-FC

M10×25
tightening torque max. 4 Nm

Internal connection diagrams

921

922

921-C3-...

922-C32-...

Terminals with housing C3．

Rubber caps and cable fasteners are supplied with the product．

Shock directions

Description

Single pole, miniaturised aircraft simulator switch with extremely fast magnetic trip time. Blade, screw and wire wrap terminals. Aircraft style threadneck and push/pull button with white trip indicator ring. Current rating marked on the push button according to customer's request by adhesive labels or marking inserts.

Typical applications

Simulators.

Ordering information

Type No.
9510 switch with magnetic instantaneous trip for flight simulators
Mounting method and style
G threadneck mounting with standard push button
L threadneck mounting with long push button
Threadneck design
1 M12x1x6.3
2 7/16-32UNx6.3
Number of poles
1 single pole
Accessories for threadneck
0 without accessories
1 hex nut M12x1, aluminium, lock washer $\varnothing 12 / \varnothing 15$ (crinkle) fitted
2 hex nut M12x1, aluminium, serrated lock washer $\varnothing 12.1 / \varnothing 17.2$, fitted
3 hex nut 7/16-32UN, aluminium, toothed washer
ø11.3/ø14.9, fitted (MS 3533-141)
9 front plate with mounting thread 6-32UNC-2B for
threadneck 7/16-32 UN, threaded sleeve 7/16-32 UN
Terminal configuration
J screw terminals with inch thread
1 6-32UNC-2B, silver plated bent 45° inwards
3 6-32UNC-2B, silver plated, with socket, bent 45° inwards
P blade terminals
1 A6.3x0.8 DIN 46244, silver plated
W wire wrap terminal
4 pin size 1.2x1.2 EN 60352-1, gold plated, with socket
Z 0 without terminals
Rated voltage
F0 DC 24 V
F1 DC 28 V
F2 DC 48 V
F4 DC 12 V
Accessories (terminal screws)
B Phillips screw 6-32UNC-2Ax4.8 fitted
(MS 51957-25)
Z without accessories
Accessories (terminal washers)
0 without accessories
23.6 split washer fitted (MS 35338-136)

Internal circuit
R2 with logic diode, contacts gold plated
Colour of the push button
S black
G green
A green, for marking insert
B black, for marking insert
0 without marking
hot-stamped marking, can be read when locating pin is above
2 hot-stamped marking, can be read when locating pin is at the bottom
9 without marking insert
Current ratings
0.5... 150 A

9510-G1 1 1-J1 F1-B 0 R2 S 0-10 A ordering example

Technical data

Voltage rating	DC 12 V	DC 24 V	DC 28 V	DC 48 V
Trip current	$<450 \mathrm{~mA}$	< 160 mA	$<200 \mathrm{~mA}$	$<340 \mathrm{~mA}$
Trip time	$<25 \mathrm{~ms}$	$<25 \mathrm{~ms}$	$<25 \mathrm{~ms}$	$<20 \mathrm{~ms}$
Min. switching voltage	at $+23^{\circ} \mathrm{C} /+73.4^{\circ} \mathrm{F}$ DC 25 V at $+60^{\circ} \mathrm{C} /+140^{\circ} \mathrm{F}$ DC 28 V			
Internal resistance	157Ω			
Typical life	10,000 operations at DC 24,28 or 48 V			
Temperature range	$-30 \ldots+60^{\circ} \mathrm{C}\left(-22 \ldots+140{ }^{\circ} \mathrm{F}\right)$			
Insulation resistance	$>100 \mathrm{M} \Omega$ (DC 500 V)			
Degree of protection (IEC 60529)	operating area IP40 terminal area IP00			
Vibration (sinusoidal)	$3 \mathrm{~g}(57-500 \mathrm{~Hz}), \pm 0.23 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to DIN IEC 60068-2-6, test Fc 10 cycles/frequency axis			
Shock	5 g (11 ms), to DIN IEC 60068-2-27, test Ea			
Humidity	240 hours at $95 \% \mathrm{RH}, 40^{\circ} \mathrm{C}$ to DIN IEC 60068-2-3, test Ca			
Mass	23 g without hardware 26 g with hardware			

Dimensions

9510-G...-J1..-B2....
tightening torque max. 3.5 Nm

Other threadneck designs

Other main terminal designs

Internal connection diagram

気EA゚ Simulator switch, magnetic operation 9510

Accessories

Label (black) for push/pull button (SO or G0)

Part number	Rated current (A)
Y 30708201	0.5
$Y 30708202$	$1 / 2$
$Y 30708203$	1
Y 30708204	1.5
$Y 30708205$	$11 / 2$
Y 30708206	2
$Y 30708207$	3
$Y 30708208$	5
$Y 30708209$	7.5
$Y 30708210$	$71 / 2$
$Y 30708211$	10
$Y 30708212$	15
$Y 30708213$	20
$Y 30708214$	25
$Y 30708215$	30
$Y 30708216$	35
$Y 30708217$	6
$Y 30708218$	40
$Y 30708219$	50
$Y 30708220$	60
$Y 30708221$	70
$Y 30708222$	75
$Y 30708223$	80
$Y 30708224$	90
$Y 30708225$	100
$Y 30708226$	120
$Y 30708227$	125
$Y 30708228$	150
$Y 30708229$	2.5
$Y 30708230$	$21 / 2$
$Y 30708231$	7

Plug-in screw terminal,

bent at 45° inwards (2 pcs needed per unit)
Y 30718702 terminal silver plated
Y 30450802 Phillips screw 6-32 UNC-2Ax4.8 (MS 51957-25)
Y 30450901 split washer (MS 35338-36)

Plug-in blade terminal (2 pcs needed per unit)
Y 30720202 P10 terminal silver plated
Plug-in/pull-out screw terminals with socket, bent at 45° inwards
X 22217311 terminals silver plated
Plug-in/pull-out wire wrap terminals with socket
X 22217412 terminals gold plated

Splash cover/hex nut assembly with O ring (IP66 and IP67) (approved to VG 95345, part 23)
X 20080103 matt black finish nut M12x1x1.8, black cover X 20080108 nickel plated nut M12x1x1.8, transparent cover X 20080109 matt black finish nut 7/16-32x1x1.8, black cover X 20080110 matt black finish nut $7 / 16-32 \times 1 \times 1.8$, transparent cover

Actuator extension (black) to be fitted on the push button (approved to VG 95345, T23)
X 20080301

Identification collar to be snapped on the push button

Y 30700401	black
Y 30700402	white
Y 30700403	red
Y 30700404	green
Y 30700405	blue

Lock out ring to block the push button in OFF position
Y 30700501 red
Y 30700502 black


```
Hex nut M12x1
Y 300 11604
Hex nut 7/16-32
Y 304 506 03
Lock washer Ø12 / Ø15
Y 300 11803
```

Serrated lock washer Ø12.1 / Ø17.2
Y 30291101
Toothed washer Ø11.3 / Ø14.9 (MS 35333-141)
Y 30450701
Front plate with mounting thread 6-32UNC-2B
for threadneck 7/16-32UN
Y 30151621
Threaded sleeve
Y 30728102
Extracting tool of marking insert
Y 30730101

Marking inserts (push button configuration A or B)

hot stamped black	green	current rating (A)
Y 30728001	Y 30728002	without
X 22217501	X 22217601	0.5
X 22217502	X 22217602	1/2
X 22217503	X 22217603	1
X 22217504	X 22217604	1.5
X 22217505	X 22217605	$11 / 2$
X 22217506	X 22217606	2
X 22217507	X 22217607	3
X 22217508	X 22217608	5
X 22217509	X 22217609	7.5
X 22217510	X 22217610	$71 / 2$
X 22217511	X 22217611	10
X 22217512	X 22217612	15
X 22217513	X 22217613	20
X 22217514	X 22217614	25
X 22217515	X 22217615	30
X 22217516	X 22217616	35
X 22217517	X 22217617	6
X 22217518	X 22217618	40
X 22217519	X 22217619	50
X 22217520	X 22217620	60
X 22217521	X 22217621	70
X 22217522	X 22217622	75
X 22217523	X 22217623	80
X 22217524	X 22217624	90
X 22217525	X 22217625	100
X 22217526	X 22217626	120
X 22217527	X 22217627	125
X 22217528	X 22217628	150
X 22217529	X 22217629	2.5
X 22217530	X 22217630	$21 / 2$
X 22217531	X 22217631	7

Description

The battery master switch E-1032-... allows remotely controlled connection and disconnection of the battery. In the event of reverse connection the battery will be disconnected from the vehicle electrical system.

Typical applications

Commercial vehicles

Ordering information

Technical data

Auxiliary contact for auxiliary relay	max. 6 A (circuit not protected)		
Mass	single pole: double pole:		approx. $3,500 \mathrm{~g}$ with enclosure,
:---			

Technical data

Voltage rating		DC 24 V	DC 12 V
Voltage rang	ON	$18-32 \mathrm{~V}$	$9-16 \mathrm{~V}$
	OFF $15-32 \mathrm{~V}$	$8.5-16 \mathrm{~V}$	

The switching function is no longer ensured when the voltage falls below the minimum values. The switch will not change its position when the voltage falls down to 0 V (automatic locking).

	utomatic locking).	
Current ratings	240 A single pole 120 A double pole	
Overload capacity	$2,500 \mathrm{~A}$ for 1 s at $23^{\circ} \mathrm{C}$, single pole $1,500 \mathrm{~A}$ for 1 s at $23^{\circ} \mathrm{C}$, double pole	
Current consumption of the electronics	$\begin{aligned} & \leq 15 \mathrm{~mA} \\ & \text { (with the control } \end{aligned}$	uit connected)
Switching current at U_{N} ON OFF	DC 24 V : approx. 15A/100 ms approx. 12A/100 ms	DC 12 V : approx. 20A/100 ms approx. 10A/100 ms

Control circuit	$4-6 \mathrm{~mA} \mathrm{ON}$
Control switch	with coding resistance
(accessory)	DC $24 \mathrm{~V}: 1 \mathrm{k} \Omega$
	DC $12 \mathrm{~V}: 330 \Omega$
	without coding resistance to ADR for
	external actuation

Temperature range	$-40 \ldots+75^{\circ} \mathrm{C}\left(-40 \ldots+16{ }^{\circ} \mathrm{F}\right)$
Reverse polarity protection	If polarized incorrectly, the Master Switch will switch off immediately, disconnecting the entire vehicle electrical system. After approx. 30 s the circuit breaker of the ON coil will trip.
Resettability	When the Battery Master Switch is mechanically switched off, it will be reset immediately by the electronics.
Typical life	10,000 operations at I_{N} 20,000 operations, mechanical
Degree of protection IEC 60529/DIN40050)	housing IP65 terminal studs with rubber cap IP54
Vibration	$5 \mathrm{~g}(57-200 \mathrm{~Hz}), \pm 0.38 \mathrm{~mm}(10-57 \mathrm{~Hz})$ to IEC 60068-2-6, test Fc, 10 frequency cycles/axis
Shock	$25 \mathrm{~g}(11 \mathrm{~ms})$ direction $1,2,3,4$ $15 \mathrm{~g}(11 \mathrm{~ms})$ direction 5,6 to IEC 60068-2-27, test Ea
Corrosion	96 h at 5 \% salt mist, to IEC 60068-2-11, test Ka
Humidity	240 h at $95 \% \mathrm{RH}$, to IEC 60068-2-78, test Cab
Terminals	
Main terminals Control cable	blade terminals with cable lugs for M10 terminal studs connector to DIN 72585

Dimensions

E-1032-NA1-... 1 pole

E-1032-NA2-... 2 pole

slotted screw plug, tightening torque $2 \mathrm{Nm} \pm 0,2 \mathrm{Nm}$

Rubber cap

Rubber caps and cable fasteners are supplied with the product.

Internal connection diagrams

Shock directions

Please follow the instructions for installation

Standard connector set OZ112Z000179, comprising:

(AMP-parts) suitable for single/double pole Battery Master Switch E-1032-..., DC 12 V and DC 24 V

Quantity	Designation	Ref. No.
1	female connector, 3-pole	X 221 37801
1	female connector, 2-pole	X 22137802
$5+1$ replacem.	jack for female connector	Y 30650101
$5+1$ replacem.	seal	Y 30650201
2	90° cover corrugated conduit NW 10	Y 306 49901

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes.
Errors and omissions excepted. Errors and omissions excepted.

투튜․․ Battery Isolation Switches E-1073-437 and E-1073-921/-922

Description

Single pole circuit breaker type 437 or single/two pole isolation switches types 921/922 featuring an additional electronic function module which limits the duration of the supply to the remote disconnect and reconnect coils, avoiding damage in the event of unusual operating circumstances. Available with undervoltage monitoring option to protect batteries from the effects of deep discharge, status output for undervoltage, auto reset feature.

Typical applications

Battery and cable protection for all types of vehicle (including electric), battery powered systems.

The exact part number required can be built up from the table of choices shown above. Ordering references for optional features should be omitted if not required.

Technical data of switch or circuit breaker

[^22]

Technical data - Electronic module

Voltage rating	DC 12 V	DC 24 V
Voltage rating range	ON 10.3-16 V OFF 9-16V Correct switching pe guaranteed if the volt minimum value.	$\begin{aligned} & 18-32 V \\ & 16-32 V \end{aligned}$ formance is not age falls below the
Temperature range electronic control unit	$-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$	
Operating current	ON approx. 30 A OFF approx. 10 A	approx. 15 A approx. 20 A
Excitation time	ON typically 100 ms OFF typically 20 ms	
Switching frequency	0.1 Hz max.	
Power consumption of electronic control unit	typically $<1 \mathrm{~mA}$ (when switched off or button operated)	
Control inputs voltage ON (high) OFF (low) power consumption	E-1073-.1..: »E/A« (ON/OFF), »U-AUS« (undervoltage protection OFF), »A-W" (auto reset) E-1073-.2..: »T-EIN" (button ON), »T-AUS« (button OFF) max. 32 V $>8 \mathrm{~V}$ $<3 \mathrm{~V}$ DC 12 V : typically 1 mA DC 24 V : typically 5 mA	
EMC	according to DIN 40839/ISO 7637	
Reverse polarity protection	If polarized incorrectly, the Battery Isolation Switch will operate immediately. The circuit breaker will trip after a few seconds.	
Undervoltage protection switching thresholds hysteresis trip time	optional with E-1073-.1.. DC $12 \mathrm{~V}: 11.0 \mathrm{~V} \pm 0.2 \mathrm{~V}$ DC $24 \mathrm{~V}: 22.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$ typically 0.5 V typically 40 sec	

Undervoltage status output »UST«, optional with E-1073-.1.. transistor output current load
minus switching
corresponding to 2 W lamp load, shortcircuit proof
Automatic reset »A-W«,
(optional with E-1073-.1.., with series 921/922 only)
Reset after mechanical disconnection is provided by the integral electronic control after approx. 100 ms .
Control current supply »+US2«, with E-1073-.2.. for T-EIN/T-AUS May be connected to 20 control inputs. Noise-voltage proof, short-circuit proof
Terminals
control terminals blade terminals $6.3 \times 0.8 \mathrm{~mm}$

Mass, with circuit breaker approx. 2,000 g without enclosure or isolation switch approx. $2,500 \mathrm{~g}$ with enclosure

Features

- Multiple functions in one unit
- High performance circuit breaker providing battery and cable protection from overloads and short-circuits.
- Master switch for ON/OFF operation
- Electrical remote control
- Undervoltage protection with status output
- Auxiliary contacts (e.g. for generator disconnection)
- Active reverse polarity protection of the entire vehicle electrical system
- Current ratings to 240 A (higher voltage ratings to special order)
- Closed-circuit current consumption $<1 \mathrm{~mA}$

Technical description

E-T-A circuit breaker/battery isolation switches combined with electronic control unit $\mathrm{E}-1073$ will meet a wide range of requirements.

Circuit breaker/battery isolation switches

The main switching contacts will open the plus, the minus or both poles according to model and application.

- Series E-1073-.... 437

Single pole thermal-magnetic circuit breaker for current ratings up to 240 A, to protect the vehicle electrical system from overloads and short circuits.

- Series E-1073-...-921

Single pole battery isolation switch for current ratings up to 240 A.

- Series E-1073-... 922

Double pole battery isolation switch for current ratings up to 120 A .

Electronic control unit

An electronic control unit enables the basic on/off function and two additional functions. The system voltage is connected across terminals + UB/-UB to provide the supply to the control unit and a feed is taken from +US1 for the remotely sited operating switch(es). The quiescent current drain is typically less than 1 mA , with a short duration excursion during excitation of the ON/OFF coils.

Basic function

Switch ON/OFF

Operation of the ON control switch will energise the switch-on coil for approximately 100 ms causing the main switching contacts to latch closed. Operation of the OFF control switch will cause the disconnect coil to trigger the release of the switching mechanism within approximately 20 ms . Both coil circuits are current limited to prevent damage through overheating.

Manual operation

An optional external operating knob is available to provide manual control in addition to electrical ON/OFF operation.

Reverse polarity protection

In the event of reverse polarity connection, the electronic control unit will immediately operate the battery switch to isolate the entire electrical system. The circuit breaker will trip after a short delay to protect the operating coils and must be re-set once the fault has been corrected.

Control functions

Type 1 E-1073-.1.. with ON/OFF switch

ON/OFF control switch input (»E/A«)

The battery isolation switch can be operated on or off by an external control switch to plus.
Undervoltage protection (optional)
This optional feature protects the battery from deep discharge should electrical loads be left on.
The battery is automatically disconnected whenever the voltage falls below a critical value for more than 40 s . The unit is reset by operation of the control switch. Sustained undervoltage after reconnection causes the unit to disconnect again after approx. 40 s .

Overriding the undervoltage protection (»U-AUS«)

Undervoltage protection may be overridden if required by connecting control output »U-AUS« to plus terminal or terminal 15.

Undervoltage status output (»UST")

Undervoltage is signalled immediately via the minus-switching, short-circuit proof transistor output (2 W lamp load).
Auto reset (»A-W«), optional with series 921 and 922
Immediate reset after unwanted mechanical disconnection (e.g. upon excessive vibration) is provided by the integral electronic control.

Type 2 E-1073-.2.. with ON/OFF button

ON/OFF control inputs (»T-ON/T-OFF")

ON/OFF function is provided by two external switches with a central control function, i.e. several systems can be operated simultaneously.

Additional control current supply ("+US2«)

If several circuit breakers/battery isolation switches are operated in parallel, switches can be supplied with control current from any of the electronic control units available. This power source is short-circuit proof, protected from noise voltages and will operate for 20 inputs.
Additional control input »ON/OFF Test" (»E/A«)
This control input can be used for maintenance purposes. The battery isolation switch is switched on when plus voltage is applied, and switched off when plus voltage is removed.

Note

The circuit breaker should be in the OFF condition when connecting or replacing the battery.

Observe instructions for installation!

FERFA Battery Isolation Switches E-1073-437 and E-1073-921/-922

Dimensions

E-1073-...-437/-921-...-K12-...

E-1073-...-437/-921-...-K60-...

E-1073-...-922-...-K72-...

Dimensions - Enclosures

E-1073-.1...-437/-921/-922 control function ON/OFF switch

E-1073-.2...-437/-921/-922 control function ON/OFF button

Typical applications

For road vehicles, e.g. buses and coaches

Series E-1073-1102-437-B3-K12-07-Si01-240 A

In this application, the E-T-A combined battery switch/circuit breaker has several functions:

- High performance circuit breaker rated at 240 A, providing battery and cable protection from overloads and short circuits.
- Isolation switch, for ON/OFF operation (e.g. for main system disconnection).
- Remote control via external, low-current circuit.
- Undervoltage protection from battery deep discharge should electrical loads be left on.
- Early under voltage signalisation via a warning lamp (undervoltage status output), located as required.
- Undervoltage operation can be overridden if required.
- Auxiliary contact to disconnect the generator field.
- Reverse polarity protection through immediate disconnection of the entire vehicle electrical system if the battery is incorrectly connected.

These functions allow the number of components and cables required to be reduced, with significant space and weight saving benefits.

For rail vehicles, e.g. underground carriages

Series E-1073-1233-437-K60-06-Si01-200 A

In this application, the E-T-A combined battery switch/circuit breaker has two functions:

- High performance circuit breaker providing battery and cable protection from overloads and short circuits.
- Isolation switch between battery and loads.

In this application, an ON/OFF remote control switch can be provided in both the first and last carriages. This will enable all batteries to be disconnected from the power distribution system by the operation of one control, irrespective of its location. In the same way, all batteries can be re-connected by the operation of a single control switch
This is extremely helpful during coupling/de-coupling of carriages for example. In addition the E/A test input permits the operation of individual battery switch/circuit breakers during maintenance.

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Monostable power relay for single pole disconnection with a variety of versions available. Due to the possible combinations of the different configurations as well as due to different modes of mounting the power relay D1 is suitable for many applications.

Typical applications

Commercial vehicles, agricultural engines, watercraft, construction vehicles, motor homes and industrial trucks.

PR60

Technical data

Current rating	100 A, 200 A, 300 A
Coil data	
Rated voltage	DC 12 V DC 24 V - DC 48 V
Operating voltage	$9 . .16 \mathrm{~V}$ (18... 32 V ($36 . .54 \mathrm{~V}$
Max. starting voltage (entire temperature range)	9 V - 14 V
Isolating voltage	$\leq 2 \mathrm{~V}$
Coil current	1 A 0,4 A 0,2 A
Coil power	approx. $10 \mathrm{~W} / 7 \mathrm{~W}$ upon request approx. 10 W approx. 10 W
Ambient temperature	$-40{ }^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$
Protection class interior terminals	IP67 (0.2 bar: 1 min) to IEC 529 and IP6K9K to DIN 40050 part 9 and IEC 529 IP00 to IEC 529
Vibration	$5 \mathrm{~g}(50-2000 \mathrm{~Hz})$
Shock	10 g (11 msec)
Resistance to	oil, fuel, hydraulic fluids
Housing	galvanized steel, tin-plated or lacquered optional
Mounting method	side mount, optionally large or small foot mount
Options	special version with suppressor diode and/or blow magnet
Terminal thread	$\begin{aligned} & 100 \text { A: M8 } \\ & 200 \text { A: M8 or M10 } \\ & 300 \text { A: M10 } \end{aligned}$
Mounting position	any
Switching element	contacts AgSnO
Min. insulation resistance	$100 \mathrm{M} \Omega$
Insulation resistance after load	$50 \mathrm{M} \Omega$
High voltage resistance	1,050 V for 1 min
Max. initial contact voltage drop	150 mV
Contact voltage drop after endurance	175 mV
ON duty	100 \%
Overload	$100 \mathrm{~A}: 800 \mathrm{~A}$ for $1 \mathrm{~s}, 200 \mathrm{~A}$ for 20 s $200 \mathrm{~A}: 1600 \mathrm{~A}$ for $1 \mathrm{~s}, 400 \mathrm{~A}$ for 20 s $300 \mathrm{~A}: 2400 \mathrm{~A}$ for $1 \mathrm{~s}, 600 \mathrm{~A}$ for 20 s
Typical life rated load Ω mechanically	75,000 cycles (at DC 28 V) 1,500,000 cycles
Starting time incl. bounce duration	max. 40 ms
Bounce duration	max. 5 ms
Release time	max. 20 ms (without suppressor diode)
Cable cross section at rated load	100 A: min. $50 \mathrm{~mm}^{2}$ 200 A: $\min .70 \mathrm{~mm}^{2}$ 300 A: min. $95 \mathrm{~mm}^{2}$
Mass	approx. 810 g (side mount, small foot mount) approx. 935 g (large foot mount)

Schematic diagram
make-contact \quad break-contact

Dimensions

PR60-...-...-. 2

Current rating 100 A: terminal thread M8
Current rating 200 A: terminal thread M8 or M10
Current rating 300 A : terminal thread M10
Nominal dimensions without direct tolerance indication: IT 14 DIN ISO 286

FETA゚ Power Relay PR60

Dimensions

PR60-...-...-. 3

Current rating 100 A : terminal thread M8
Current rating 200 A : terminal thread M8 or M10
Current rating 300 A : terminal thread M10
Nominal dimensions without direct tolerance indication: IT 14 DIN ISO 286

PR60-...-..3-.. with blow magnet

Accessories

Suppressor diode
 X 22302901

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

The electronic circuit breaker ESS1 is designed to ensure selective disconnection of individual loads in industrial systems which are powered by a DC 24 V switch mode power supply. Selectivity means that the ESS1 responds faster to overload or short circuit conditions than the power supply.

The ESS1 has four major tasks:

1. In the event of an overload or short circuit in a load circuit, even the shortest break-down of the output voltage of the power supply to values below 18 V must be prevented under all circumstances.
Otherwise all other components fed by the power supply will respond unpredictably to the voltage dip. Result: reset, re-start, standstill of components or whole system. The voltage dip is caused by the characteristic overcurrent behaviour of the power supply (straight characteristic curve, fold-back curve, hiccup mode etc.).
2. Selective protection/disconnection must be ensured even at worst-case overload conditions.
Long feed lines prevent the occurrence of a significant short circuit current (see table 1).
3. The current limited switch-on of loads with high input capacitance must be ensured without increase of rated current adjustment.
Electronic DC 24 V components contain big input capacitors for suppression or back-up of voltage dips.

4. Fault indication

Features

- Electronic circuit breaker for protecting system components (sensors, actuators, field bus couplers, control units etc.) which are powered by a DC 24 V switch mode power supply.
- Connection of all load types (resistive, inductive, capacitive).
- Alternative current ratings (3A or 6 A) can be selected by means of the switch on the device.
- Overload- and short-circuit proof switching output with active limitation of inrush and short-circuit currents.
- Overload-dependent trip characteristics ("thermal-magnetic circuit breaker style", but much narrower trip curve tolerances).
- Power Mosfet switching output, high side switch.
- Additional disconnection by electromechanical switch in the event of overload.
- RED actuator button: reset or manual trip.
- Visual status indication:

GREEN LED: O.K. signal
YELLOW LEDs (40, 60, 80, 100 \% of rated current): load current indication
RED LED (110 \%): flashing or lighted after tripping

- Fault indication through auxiliary contact (N/C, break contact).
- Integral thermal circuit breaker (with VDE, UL, CSA approval) serving as a fail-safe element in the load circuit and providing reverse polarity protection.
- Option: control input

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Operating data	
Operating voltage U_{S}	DC 24 V ($\mathrm{DC} \mathrm{18..}$.32 V)
Current rating I_{N}	3 A or 6 A (selected by means of a switch)
Current consumption I_{0} (load output non-conductive)	typically 13 mA
OK signal	GREEN LED lighted when operating voltage is applied
Reverse polarity protection U_{S}	integral with the device -> internal fail-safe-element tripped (see »Reset« on connection side), LEDs are unlit
Insulation voltage	AC 500 V (control circuit, load circuit, fault indication)
Load circuit	
Load output	Power-MOSFET switching output (high side switch)
Max. data of load (100 \% ON duty)	DC $24 \mathrm{~V} / 5 \mathrm{~A}$ (resistive, inductive, capacitive, lamp load)
Voltage drop at I_{N}	typically $220 \mathrm{mV} / 3 \mathrm{~A}$ typically $440 \mathrm{mV} / 6 \mathrm{~A}$
Overload disconnection	typically $1.1 \times \mathrm{I}_{\mathrm{N}}$
$\begin{aligned} & \text { Trip times } \\ & \mathrm{t}_{\mathrm{v}} 1: \mathrm{I}_{\text {load }}>1.05 \ldots 2 \times \mathrm{I}_{\mathrm{N}} \\ & \mathrm{t}_{\mathrm{v}} 2: \mathrm{I}_{\text {load }}>2 \times \mathrm{I}_{\mathrm{N}} \end{aligned}$	see time/current characteristic curve: typ. 5 s, LED RED (110 \%) flashing until disconnection occurs typ. $5 \mathrm{~s} . . .100 \mathrm{~ms}$, LED RED (110 \%) lighting after disconnection, fault indication F closed
Short-circuit current I_{K}	active current limitation max. $2 \times I_{N}$ (6 A or 12 A)
Trip time $\mathrm{t}_{\mathrm{K}}\left(\right.$ at I_{K})	typically 100 ms
Temperature disconnection:	internal temperature monitoring with physical isolation, LED RED (110 \%) lighting after disconnection, fault indication F
Load current indication	4 YELLOW LEDs (40, 60, 80, 100 \%) or 1 RED LED (110 \%) signalling utilization of the set current rating in \% (e. g. higher than 40 \%)
Starting delay $\mathrm{t}_{\text {start }}$	typically 1 s upon application of U_{S} after each switch-on
Free-wheeling circuit	integral bi-directional transil diode; external free-wheeling diode recommended for inductive loads
Disconnection of load circuit	single pole (switch contact) - by manual operation of the RED button - upon electronic fault disconnection (overload, short-circuit)

Technical data (Tambient $=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$
Several load outputs must not be connected in parallel

Control circuit (option)

Control input EC/EO - to customer requirement: possibly physically isolated via opto coupler/ control voltage $U_{S} /$ control current $I_{S} /$ switching frequency $f_{\max } /$ control signal $\left(U_{S}=\gg 1 \ll\right)$ Switching times $/ \mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }} /$ leakage current/ protection

Fault indication

Fault indication F	potential-free auxiliary contact (SC-S0), break contact (N/C), DC $30 \mathrm{~V} /$ max. 1 A
Status of fault indication	Contact closed in the event of power failure or when the switch (RED button) has tripped upon: - overload/short-circuit in the load circuit (RED LED lights). The fault indicated by that LED is stored until the RED operating button is reset. - manual disconnection of the device
Signal delay	typically 150 ms
Reverse polarity of U_{S}	internal fail-safe element will trip
General data	
Ambient temperature	$0 . . .40^{\circ} \mathrm{C}$ (without condensation, see EN 60204-1)
Storage temperature	$-20 \ldots+70{ }^{\circ} \mathrm{C}$
Blade terminals	6.3 mm to DIN 46244-A6.3-0.8 for E-T-A Power distribution system SVS1-xx-...
Backup fuse for ESS1	not required because of the integral redundant fail-safe element (thermal E-T-A circuit breaker)
Housing material	aluminium
Mounting of housing	Plug-in for distribution system SVS1 for symmetric rail mounting
Vibration	3 g , test to IEC 60068-2-6 test Fc
Degree of protection	Housing: IP20 DIN 40050/IEC 529 Terminals: IPOO DIN 40050/IEC 529
EMC (EMC directive, CE logo)	Emission: EN 50081-1 Susceptibility: EN 61000-6-2
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)	$17.5 \times 100 \times 55 \mathrm{~mm}$
Mass	approx. 80 g

Ordering information

Type No.
ESS1 Electronic Circuit Breaker for DC 24 V applications

- Version

Basic circuit diagram

Time/Current characteristic curve ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Explanation of the characteristic curve:

- The trip time is typically 5 s in the range between 1.05 and $2 \times \mathrm{I}_{\mathrm{N}}$.
- Electronic current limitation starts at $2 \times \mathrm{I}_{\mathrm{N}}$ which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload until disconnection will not exceed two times the current rating.
- Without the current limitation activated at $2 \times I_{N}$ a much higher overload current would flow in the event of an overload or short circuit.
- Trip time after activation of current limitation is between 5 s and 100 ms (short circuit).

Terminal wiring diagram

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\text { inch }}$)

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Matrix of the ESS1 switching conditions

Operating mode (unit without Control input)	Trouble-free operation	Overload: $\overline{\mathrm{I}_{\text {load }}=1.1 \ldots . .2 \times \mathrm{I}_{\mathrm{N}}}$	$\begin{array}{\|l} \hline \text { Short-circuit: } \\ I_{\text {Ioad }}>2 \times I_{N} \end{array}$	temperature disconnection (> $150^{\circ} \mathrm{C}$ / $302{ }^{\circ} \mathrm{F}$)	internalfailure **)
Load output	ON = conductive	OFF = non-conductive	OFF = non-conductive	$\begin{aligned} & \text { OFF } \\ & =\text { non-cond. } \end{aligned}$	
Load circuit 1-pole discon. (through switching contact	no	yes, after approx. 5 s	yes, after approx. $5 \mathrm{~s} . . .100 \mathrm{~ms}$	yes, after approx. 60 ms	
Indication					
GREEN LED O. K.-signal	lighted	lighted	lighted	lighted	not lighted
$\begin{array}{\|l} \hline \text { RED LED } \\ \left(1>110 \% \text { von } I_{N}\right) \end{array}$	not lighted	LED flashes for approx. 5 sec, LED flashes momentarily, lighted after tripping	LED flashes for approx. 5 sec , LED flashes momentarily, lighted after tripping	LED flashes momentarily, lighted after tripping	
YELLOW LEDs Load current indication (> 40, 60, $80,100 \%$ von I_{N})	0... 4 LEDs lighted, dependent on load current	none of the LEDs lighted after tripping	none of the LEDs lighted after tripping	none of the LEDs lighted after tripping	
Fault indication F aux. contact	open	closed	closed	closed	
RED actuator/ reset button	ON	tripped	tripped	tripped	

- With manual operation (RED button pulled): fault indication F, RED LED also lighted.
* Upon response of the internal temperature control (chip temperature of power semiconductors is $+150{ }^{\circ} \mathrm{C} /+302{ }^{\circ} \mathrm{F}$ for a short period of time) the load current is disconnected. The circuit breaker trips and the red LED ($\mathrm{I}>110 \%$) is lighted.

If the ESS1 is to be switched off again, a short cooling down period must be taken into account due to the temperature hysteresis of the semiconductor chip. The cooling down period will be approx. 5 sec dependent on the energy absorption (behaviour similar to thermal circuit breaker).
${ }^{* *}$) Electronic control unit defective

- internal fail-safe element has tripped (see »reset" on terminal side of the ESS1).

Table 1: Electronic Circuit Breaker ESS1 for DC 24 V

Reliable trip of ESS1 with different cable lengths and cross sections

Description

The E-T-A power distribution system SVS1 is designed to accommodate the electronic circuit breaker series ESSx. It distributes the current supplied by a switch mode power supply up to 40 A to 4, 8,12 or 16 channels. Mains connection is via screw terminals. The individual circuit breakers can be plugged in. Loads are connected via cage clamp screwless terminals. The power distribution includes integral wiring of the signalisation of the individual channels which can be combined to group signals A and B. The SVS1 can be snapped onto a DIN symmetrical rail.

Features

- Power distribution system for short-circuit limited DC 24 V applications up to max. 40 A continuous load
- Three screw terminals (max. $10 \mathrm{~mm}^{2} / \mathrm{AWG} 8$) for:
- DC 24 V (+) (green)
- DC 24 V (-) (green)
- FE (functional earth) (green)
for connecting the switched-mode power supply
- Modular design ESS1-positions:
- SVS1-16-...: 16 channels - SVS1-12-...: 12 channels
- SVS1-08-...: 8 channels - SVS1-04-...: 4 channels
- Load outputs (L) per channel
(complete with screwless spring-loaded terminals, wiring
$4 \times$ max. $2.5 \mathrm{~mm}^{2}$ (AWG 14)/ without connector sleeve):
- (LB) group output (+) internally bridged across all channels (for special applications)
- (L+) load output (+), per channel
- (-) DC 24 V (-)
- (FE) functional earth
- Signal output (S) per channel
(complete with screwless spring-loaded terminals, wiring
$3 \times \max .2 .5 \mathrm{~mm}^{2}$ (AWG 14)/ without connector sleeve):
- (SO) single output
- (SA) signal group A
- (SB) signal group B
- 2 Group signal outputs (output or further connection) (complete with screwless spring-loaded terminals, wiring $3 \times$ max. $2.5 \mathrm{~mm}^{2}$ (AWG 14)/ without connector sleeve):
- (SAS) signal group A --> group signal
- (SBS) signal group B --> group signal
- (SCS) common return wire for groups A / B (protected by a 1 Amp. E-T-A Circuit Breaker F/SCS)
- Option: control input (E) - not used -

Ordering information

Type

SVS1 Power distribution system

- Short-circuit limited DC 24 V applications
- Max. 40 A continuous load
- 3 screw terminals max. $10 \mathrm{~mm}^{2}$ (AWG 8) for - DC $24 \mathrm{~V}(+) / D C 24 \mathrm{~V}(-) /$ functional earth FE

Connection diagram SVS1-(n)

Dimensions SVS1-16, fitted with ESS1

Schematic diagram SVS1-(n)

Example of signal group

EEDEA․ Electronic Circuit Breaker ESS20-0..

Description

Electronic circuit breaker type ESS20-0.. is designed to ensure selective disconnection of individual loads in systems which are powered by a DC 24 V switch-mode power supply.

DC 24 V power supplies, which are widely used in industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads. As well as an unidentified failure this also means stoppage of the whole system.

Through selective disconnection the ESS20-0.. responds much faster to overload or short circuit conditions than the switch-mode power supply. This is achieved by a combination of active current limitation and well-proven circuit breaker technology including physical isolation. The ESS20-0.. limits the highest possible current to 1.8 or 1.5 times the selected rated current of the circuit breaker. Thus it is possible to switch on capacitive loads of up to $20,000 \mu$ F lamp loads, but they are disconnected only in the event of an overload or short circuit.

For optimal adjustment to the application conditions the current rating of the ESS20-0.. can be selected in fixed values from $0.5 \mathrm{~A} . . .10 \mathrm{~A}$ and in adjustable variants $1 \mathrm{~A} / 2 \mathrm{~A}$ or $3 \mathrm{~A} / 6 \mathrm{~A}$. Failure and status indication are provided by a bicolour LED and an integral signal contact.

The ESS20-0.. features a width of only 12.5 mm and can be plugged into the E-T-A power distribution socket Module 17 plus and SVS02/SVSO4 (for ESS20-003) ensuring ease of installation and saving space in control cabinets.

Features

- Selective load protection with physical isolation in the event of a fault.
- All types of loads can be connected (small DC motors etc. on request).
- Active current limitation (1.8 or 1.5 times rated current $I_{N}=8 \mathrm{~A}$ or 10 A) for safe connection of capacitive loads up to $20,000 \mu \mathrm{~F}$ and on overload/short circuit.
- Electronic trip characteristic.
- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$ plus, even with long load lines or small cable cross sections (see table 2).
- Selectable current ratings (fixed values 0.5 A... 10 A or two steps: 1 A/2 A or 3 A/6 A).
- Manual ON/OFF button (push-push actuation).
- Clear status and failure indication.
- Width per unit only 12.5 mm .
- Plug-in mounting utilising power distribution system Module 17plus or SVS02/SVS04 (for ESS20-003), see product group 7.

Approvals

Authority	Voltage rating	Current ratings
UL 1077	DC 24 V	$0.5 \ldots 10 \mathrm{~A}$

Attention: the user has to make sure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESS20 used.

ESS20-0..

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)
Operating data

Operating voltage U_{S}	DC 24 V (18... 32 V)
Current rating I_{N}	fixed current ratings: $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$, $4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}$ switchable: $1 \mathrm{~A} / 2 \mathrm{~A}$ or $3 \mathrm{~A} / 6 \mathrm{~A}$
Power consumption	typically 13 mA
Trip current (bimetal)	typically 0.3 A (only in the event of a failure, before physical isolation)
Status indication by means of	bicolour LED: GREEN: unit is ON, power-MOSFET is switched on ORANGE: in the event of overload or short circuit until physical isolation LED not lighted: push button in OFF position potential-free signal contact (changeover contact) OFF-position of push button
Reverse polarity protection of U_{S}	internal bimetal (fail-safe element) trips, push button moves into OFF position
Load circuit	
Load output	Power-MOSFET switching output (high side switch)

Max. data of load

| with side-by-side mounting | |
| :--- | :--- | see table 1.

Temperature disconnection	internal temperature monitoring with physical isolation
Low voltage monitoring load output	ON at $U_{S}>16 \mathrm{~V}$ OFF at $U_{\mathrm{S}}<8 \mathrm{~V}$
Starting delay $\mathrm{t}_{\text {start }}$	typically 0.3 sec after every switch-on and after applying U_{S}
Disconnection of load circuitsingle pole (switch contact) $-\quad$ by push-push actuation of the blue push button	
	- upon electronic fault disconnection (overload, short circuit)
	- with reverse polarity

Several load outputs must not be connected in parallel.

屋 E-TAO Electronic Circuit Breaker ESS20-0.

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Fault indication, signal output
$\left.\left.\begin{array}{ll}\hline \text { Fault indications } & \begin{array}{l}\text { potential-free auxiliary contact change-over } \\ \text { (SC-SO / SC-SI) simultaneously with } \\ \text { physical isolation } \\ \text { max. DC 30 V / 0.5 A, min. 10 V / } 10 \mathrm{~mA}\end{array} \\ \hline \begin{array}{l}\text { Signal output ESS20-001 } \\ \text { (single signalisation N/O) }\end{array} & \begin{array}{l}\text { blue push button in ON position: } \\ \text { signal contact SC-SI is closed } \\ \text { blue push button in OFF position: }\end{array} \\ & \text { signal contact SC-SI is open }\end{array}\right] \begin{array}{ll}\hline \text { Signal output ESS20-003 } \\ \text { (group signalisation N/C) }\end{array} \begin{array}{ll}\text { blue push button in ON position: } \\ \text { signal contact SC-SO is closed } \\ \text { (SC-SI is copen) } \\ \text { blue push button in OFF position: }\end{array}\right\}$

Table 1: voltage drop, current limitation, max. load current

current rating I_{N}	typically voltage drop U_{ON} at I_{N}	active current limitation (typically)	max. load current at 100% ON duty	
			$\mathrm{T}_{\mathrm{U}}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{U}}=50^{\circ} \mathrm{C}$
0.5 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	140 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	180 mv	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	140 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	190 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	280 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	220 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	280 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
$1 \mathrm{~A} / 2 \mathrm{~A}$	$140 \mathrm{mV} / 280 \mathrm{mV}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$1 \mathrm{~A} / 2 \mathrm{~A}$	$1 \mathrm{~A} / 2 \mathrm{~A}$
$3 \mathrm{~A} / 6 \mathrm{~A}$	$140 \mathrm{mV} / 280 \mathrm{mV}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$3 \mathrm{~A} / 6 \mathrm{~A}$	$3 \mathrm{~A} / 5 \mathrm{~A}$

Attention: when mounted side-by-side without convection the ESS20-0.. should not carry more than 80% of its rated load with 100% ON duty because of the integral thermal circuit breaker

Ordering information

Type No.
ESS20 Electronic Circuit Breaker with current limitation (e.g. typically 1.8 times rated current or $1.5 \times I_{N}$, see table 1)
Version $\quad \frac{\text { with physical isolation in the event of a failure }}{0}$

0 with physical isolation in the event of a failure
Control input
0 without control input
Signal output
1 signal contact N/O (single signalisation)
2 signal contact N/C (single signalisation)
3 signal contact changeover (group signalisation) Operating voltage
DC 24 V rated voltage DC 24 V
Current rating
0.5 A

1 A
2 A
3 A
4 A
6 A
$\frac{8 \mathrm{~A}}{10 \mathrm{~A}}$
$1 \mathrm{~A} / 2 \mathrm{~A}$ (selectable)
$3 \mathrm{~A} / 6 \mathrm{~A} \quad$ (selectable)
ESS20-0 0 - DC 24 V - 3 A/6 A ordering example
(recommended type)
Attention: the user has to make sure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESS20 used.

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Terminal wiring diagrams (e. g. adjustable 3 A/6 A)

ESS20-001-...

ESS20-002-..

ESS20-003- ...

Basic circuit diagrams (e. g. adjustable 3 A/6 A)

ESS20-002-... (single signalisation N/C)

ESS20-003- ... (group signalisation with change over)

Time/Current characteristic curve $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

${ }^{* 1}$) current limitation typically $1.8 \times I_{N}$ times rated current at $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{~A} . . .6 \mathrm{~A}$
current limitation typically $1.5 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A} . . .10 \mathrm{~A}$

- The trip time is typically 5 s in the range between 1.1 and $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$).
- Electronic current limitation starts at typically $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$) which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload until disconnection will not exceed $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$) times the current rating. Trip time is between 100 ms (short circuit current I_{K}) and 5 sec (at overload with high line attenuation).
- Without the current limitation activated at typically $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1)}$ a considerably higher overload current would flow in the event of an overload or short circuit.
- After detection of an overload or short circuit the LED changes colour from GREEN to ORANGE. The LED will no longer be lighted after the circuit breaker has tripped.
- Resetting the circuit breaker is not possible before the integral bimetal has cooled down (approx. 10 sec).

Table 2: Reliable trip of ESS20

Reliable trip of ESS20 with different cable lengths and cross sections

Accessories for ESS20-0..

Description

Module 17plus is a power distribution system for use with electronic circuit breaker ESS20-0...
Each module accommodates two breakers with an individual housing width of only 12.5 mm and fits onto all industry standard mounting rails.
The two-way modules can be interconnected to provide as many ways as required with a terminal block fitted at each end for connection of signalling circuits. A distribution busbar can be fitted on the supply side of the modules (positive pole) though each pole of multipole circuit breakers must be individually connected.
Electrical connections are by means of spring-loaded terminals. The reference potential for the ESS2O-0.. (Gnd pin 11) is also looped through and connected to the terminals at the sides.
The integral make contact of the ESS20-001 (SC-SI) can be tapped at terminal 12 of the relevant channel (individual signalisation).
The integral make contact of the ESS20-002 (SC-SI) can be tapped at terminal 12 of the relevant channel (individual signalisation).
The ESS20-003 has an integral signal contact (change-over contact). The contact SC-SO is used for group fault signalisation. For this purpose the contacts for signalisation are connected in series in the Module 17plus and are connected to the terminal blocks via two terminals $(13,14)$. It is possible with a test probe to contact the series connection in each module and detect possible interruptions.
All internal wirings for the ground potential and the group signal are established by the modular mounting of the individual Modules 17plus. Meets the requirements of UL60950.

Ordering information

17PLUS-Q02-00	Module 17plus, centre piece, two-way
17PLUS-QA0-LR	one each left- and right-side terminal block for supply feed from the side by means of screw terminal, connection of signalisation etc.

Pin configuration, fitted with ESS20-0..

17plus

Technical data

Connection

LINE feed (1)
LOAD output (2)
Reference potential Gnd/ group signal terminals (11 or 13,14):
individual signal
terminal (12)

Spring-loaded terminals for solid conductors and stranded cables with and without wire end ferrules. Please use appropriate screw driver size (SD) for removing the spring loaded terminals. spring-loaded terminals for $1.5-10 \mathrm{~mm}^{2}$ (AWG 10), SD 2 (0.8×4.0) spring-loaded terminals for $0.25-4 \mathrm{~mm}^{2}$ (AWG 12), SD 1 (0.6x3.5)
spring-loaded terminals for $0.25-2.5 \mathrm{~mm}^{2}$ (AWG 14), SD 1 (0.6x3.5)

Voltage rating (without ESS20-0..):	AC 433 V ; DC 65 V
Current rating (without ESS20-0..)	
LINE feed (1)	50 A
LOAD output (2)	25 A
Reference potential Gnd (11)	10 A
Individual signal (12)	1 A (with ESS20-0..: 0.5 A)
Group signal /(13-14)	1 A (with ESS20-0..: 0.5 A)
Internal resistance values (without ESS20-0..)	
LINE-LOAD (1-2)	$\leq 5 \mathrm{~m} \Omega$
Group signal (13-14) per module	$\leq 8 \mathrm{~m} \Omega$ per pole $+5 \mathrm{~m} \Omega$ for each additional module
Busbar for power distribution	
(blue or red):	$\mathrm{I}_{\max } 32 \mathrm{~A}$
non-insulated busbar:	$I_{\text {max }} 50 \mathrm{~A}$
(The non-insulated busbar, too, meets brush contact safety	
Dielectric strength of Module 17plus (without ESS20-0..)	
between main circuits (without busbar): 1,500 V	
main circuit to auxiliary circuit:	1,500 V
between auxiliary circuits:	1,500 V
Mass: Module 17plus (centre piece) terminal blocks (pair)	approx. 85 g approx. 30 g

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Connection diagram for ESS20-001

Installation example

Installation:
1 Clip modules onto DIN rails.
2 Push modules together (side-by-side)
3 Snap on right-side and left-side terminal blocks.
4 Cut busbar to required length and fit on supply side of the modules.
5 Connect line feed with spring-loaded terminals.
6 Plug in ESS20-0..

Connection and disconnection of cables with screw driver

Connection diagram for ESS20-003

Accessories

Busbar 32 A
X 22200501 blue insulation, $500 \mathrm{~mm} / 19.68$ in.
X 22200502 red insulation, $500 \mathrm{~mm} / 19.68 \mathrm{in}$.
X 22200503 grey insulation, $500 \mathrm{~mm} / 19.68$ in.

Busbar 50 A
Y 30701601 non-insulated, 500 mm/19.68 in.

Busbar 50 A
Y 30701611 non-insulated, 500 mm/19.68 in.

End bracket
Screw terminal for busbar
X 22200401
X 21115601 non insulated

Jumper
X 22206601

Labels
marking area $6 \times 10 \mathrm{~mm}$
(packing unit 10 pcs $=1$ strip)
part. no. Y 30794261

Accessories for ESS20-0..

Retaining clip Y 30775401

Mounting of retaining clip

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Accessories for ESS20-0..

Busbar (10-way) (supplied as a complete package)

for type 17 socket

(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for busbar (10-way)
Y 30382401

Pin selection, fitted with ESS20-0..

Description

The special device ESS20-1.. is a further extension of the product line "electronic circuit breakers". Type ESS20-1.. has a width of only 12.5 mm and selectively protects all DC 24 V loads through a combination of active electronic current limitation and well-proven circuit breaker technology including physical isolation and manual actuation. The ESS20-1.. can be plugged into the E-T-A power distribution socket Module 17plus, ensuring ease of installation and a significant reduction of wiring time.

DC 24 V switch-mode power supplies ($10 \mathrm{~A} . . .40 \mathrm{~A}$), which are widely used in automation industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads.

The ESS20-1.. helps to overcome this problem as it responds to the overload condition faster than the switch-mode power supply. The highest possible overcurrent is limited to 1.8 or 1.5 times rated current. Thus it is possible to switch on capacitive loads up to $\mathbf{2 0 . 0 0 0} \boldsymbol{\mu \mathrm { F }}$ but they are disconnected only in the event of an overload or short circuit. For optimal adjustment to the application conditions the current rating of the ESS20-1.. can be selected in fixed values from 0.5 A... 10 A and in switchable variants $1 \mathrm{~A} / 2 \mathrm{~A}$ or $3 \mathrm{~A} / 6 \mathrm{~A}$. Failure and status indication are provided by a bicolour LED and an integral short-circuit proof signal output.

Upon detection of overload or short circuit in the load circuit the MOSFET of the load output will be blocked and current flow in the load circuit will be interrupted. MOSFET and load circuit may be reset by means of the electronic reset input or manually by actuating the push-button (PUSH-PUSH operation). The load circuit may also be physically isolated during start-up of the equipment, e. g. for measuring purposes.

Features

- Selective load protection, electronic trip curve
- Active current limitation (1.8 or 1.5 times rated current $I_{N}=8 \mathrm{~A}$ or 10 A) with connection of capacitive loads up to $20,000 \mu \mathrm{~F}$ and at overload/short circuit.
- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$ plus, even with long load lines or small cable cross sections (see table 2).
- Selectable current ratings (fixed values $0.5 \mathrm{~A} . .10 \mathrm{~A}$ or two steps: 1 A/2 A or 3 A/6 A).
- Manual ON/OFF button (push-push actuation) with physical isolation
- Clear status and failure indication through LED and signal output
- Electronic reset input
- Integral fail-safe element
- Width per unit only 12.5 mm
- Plug-in mounting utilising power distribution system Module 17 plus

Approvals

Authority	Voltage rating	Current ratings
UL 1077	DC 24 V	$0.5 \ldots 10 \mathrm{~A}$

Attention: the user has to make sure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESS20 used.

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Operating data	
Operating voltage U_{S}	DC 24 V (18... 32 V)
Current rating I_{N}	fixed current ratings: $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$, $4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}$ switchable: $1 \mathrm{~A} / 2 \mathrm{~A}$ or $3 \mathrm{~A} / 6 \mathrm{~A}$
Closed circuit current I_{0}	typically 22 mA
Status indication by means of	- bicolour LED: GREEN: unit is ON, load circuit/powerMOSFET is switched on, signal output on, supplying +DC 24 V ORANGE: in the event of overload or short circuit until electronic disconnection RED: unit switched off electronically, load circuit/power MOSFET off, status output blocked, undervoltage ($\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$), after switch-on until end of switch-on delay. OFF: switched off manually with pushbutton, unit off load signal output SF: - 1 signalisation per channel - load "ON" SF = +DC 24 V - load "OFF" SF = 0 V - ON/OFF position of push button
Load circuit	
Load output	power MOSFET switching output (plus switching)
Max. data of load with side-by-side mounting see table 1	
Voltage drop $U_{\text {ON }}$ at I_{N}	see table 1
Disconnection at overload	typically $1.1 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$
Short circuit current I_{K}	typically $1.8 \times \mathrm{I}_{\mathrm{N}} /$ active current limitation see table 1
Trip time for physical isolation for electronic disconnection	see time/current characteristics typically 3 s at $\mathrm{I}_{\text {load }}>1.1 \times \mathrm{I}_{\mathrm{N}}$ typically $3 \mathrm{~s} . . .100 \mathrm{~ms}$ at $\mathrm{I}_{\text {load }}>1.8 \times \mathrm{I}_{\mathrm{N}}$ or $1.5 \times \mathrm{I}_{\mathrm{N}}$
Temperature disconnection	internal temperature monitoring with electronic disconnection
Low voltage monitoring of load output	with hysteresis, no reset necessary "OFF" at $\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$ "ON" at $U_{S}>16 \mathrm{~V}$
Starting delay $\mathrm{t}_{\text {start }}$	typically 0.5 sec after every switch-on and after applying U_{S}
Physical isolation	single pole (switch contact) of load circuit - by push-push actuation of the blue push button

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{U}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Free-wheeling circuit	external free-wheeling diode recommended with inductive load
Several load outputs	must not be connected in parallel
Signal output SF	
Signal output SF	plus-switching signal output per unit, applies U_{S} to terminal 12 of module 17plus Ratings: DC $24 \mathrm{~V} / \max .0 .5 \mathrm{~A}$ (shortcircuit proof)
Signal output SF ON	signal output has +24 V level if - the load output has continuity (ON condition of load)
Signal output SF OFF	signal output has 0 V level if - the load output is electronically blocked (fault condition or switch-on delay) - the blue push button is in OFF position - no operating voltage U_{S} is connected. The signal output is connected to ground via a pull-down resistor (10 kOhm).
Reset input	
Reset input RE (terminal 13 or 14 of module 17plus Caution: unused slots have to be fitted with jumpers)	The electronically blocked ESS20-1.. may e.g. be reset via an external momentary switch due to the falling edge of a short +DC 24 V impulse. The reset signal will be fed in terminal 13 or 14 of the module 17plus and is internally pre-wired. The reset simultaneously affects all blocked ESS20-1.. channels of the power distribution system, all switched on ESS20-1.. channels remain unaffected.
Reset input level: voltage high low current consumption min. pulse length	$\begin{aligned} & \max .+\mathrm{DC} 32 \mathrm{~V} \\ & >\mathrm{DC} 8 \mathrm{~V} . . \mathrm{DC} 32 \mathrm{~V} \\ & <\mathrm{DC} 3 \mathrm{~V} . .0 \mathrm{~V} \\ & \text { at +DC } 24 \mathrm{~V} \text { typically } 2.6 \mathrm{~mA} \\ & 10 \mathrm{~ms} \end{aligned}$

General data

Fail-safe element	back-up fuse for ESS21 not required as it has an integral redundant fail-safe element (thermal E-T-A circuit breaker); push button in OFF position with tripped fail-safe element
Blade terminals	6.3 mm to DIN 46244-A6.3-0.8
Housing material	plastics
Mounting	plug-in type for E-T-A power distribution socket Module 17plus
Ambient temperature	$0 . . .+50^{\circ} \mathrm{C}$ (without moisture condensation, cf. EN 60204-1)
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Humidity	$96 \mathrm{hrs} / 95 \% \mathrm{RH} / 40^{\circ} \mathrm{C}$ to IEC 60068-2-78, test Cab. climate class 3 K3 to EN 60721
Vibration	3 g , test to IEC 60068-2-6 test Fc
Protection class	housing: IP30 DIN 40050, terminals: IPOO DIN 40050
EMC requirements (EMC directive, CE logo)	emitted interference: EN 50081-1 immunity: EN 61000-6-2
Insulation co-ordination (IEC 60934)	0.5 kV/2 re-inforced insulation in operating area
Dielectric strength operating area installation area	(see dimensions) test voltage AC $1,000 \mathrm{~V}$ test voltage AC 500 V
Insulation resistance (OFF condition of push button)	$>100 \mathrm{M} \Omega(\mathrm{DC} 500 \mathrm{~V})$ between [LINE (+) - LOAD (+)]
Approvals	UL 1077, File E67320 Supplementary Protectors for use in Electrical Equipment CE logo
Dimensions (BxHxT)	$12.5 \times 105 \times 60 \mathrm{~mm}$
Mass	65 g

Table 1: voltage drop, current limitation, max. load current

current rating	typically voltage drop	active current	max. load current at 100% ON duty	
I_{N}	U_{ON} at I_{N}	limitation (typically)	$\mathrm{T}_{\mathrm{U}}=40{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{U}}=50{ }^{\circ} \mathrm{C}$
0.5 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	140 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	180 mv	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	140 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	190 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	280 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	220 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	280 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
$1 \mathrm{~A} / 2 \mathrm{~A}$	$140 \mathrm{mV} / 280 \mathrm{mV}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$1 \mathrm{~A} / 2 \mathrm{~A}$	$1 \mathrm{~A} / 2 \mathrm{~A}$
$3 \mathrm{~A} / 6 \mathrm{~A}$	$140 \mathrm{mV} / 280 \mathrm{mV}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$3 \mathrm{~A} / 6 \mathrm{~A}$	$3 \mathrm{~A} / 5 \mathrm{~A}$

Attention: when mounted side-by-side without convection the ESS20-1.. should not carry more than 80% of its rated load with 100% ON duty because of the integral thermal circuit breaker.

Ordering information

Type

ESS20 Electronic Circuit Breaker with current limitation (e.g. typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ or $1.5 \times \mathrm{I}_{\mathrm{N}}$, see table 1)

| $\frac{\text { Version }}{1 \quad \text { without physical isolation in the event of a failure }}$ |
| :--- | :--- |

Control input

2 with reset input RE
Signal output

4	status output SF (single signalisation, plus switching)
	Operating voltage
	$\overline{\text { DC } 24 V}$ rated voltage DC 24 V
	Current rating
	0.5 A
	1 A
	2 A
	3 A
	4 A
	6 A
	8 A
	10 A
	$1 \mathrm{~A} / 2 \mathrm{~A}$ (selectable)
	$3 \mathrm{~A} / 6 \mathrm{~A}$ (selectable)
4	C $24 \mathrm{~V}-3 \mathrm{~A} / 6 \mathrm{~A}$ ordering example (recommended type)

Attention: the user has to make sure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESS20 used.

ZETRA Electronic Circuit Breaker with reset input ESS20-1..

Terminal wiring diagram ESS20-124 (e. g. switchable 3A/6 A)
Basic circuit diagram ESS20-124 (e. g. switchable 3 A/6 A)

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Time/Current characteristic curve ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

${ }^{* 1}$)current limitation typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{~A} . . .6 \mathrm{~A}$
current limitation typically $1.5 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A} . . .10 \mathrm{~A}$

- The trip time is typically 3 s in the range between 3 s .
- Electronic current limitation starts at $1.8 \times \mathrm{I}_{N}{ }^{* 1}$) which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload until disconnection will not exceed 1.8*1) times the current rating. Trip time depends on extent of overcurrent. In the event of an overload of $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$) plus the trip time will be up to 3 s , in the event of a short circuit it will be 100 ms .
- Without current limitation to typically $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1)}$ a much higher overcurrent would occur in the event of overload or short circuit.

Table 2: Reliable trip of ESS20

Reliable trip of ESS20 with different cable lengths and cross sections

Resistivity of copper $\rho_{0}=$		0.0178 (Ohm x mm²) / m							
$\mathbf{U S}_{\text {S }}=\mathbf{D C} 19.2 \mathrm{~V}(=80 \% \mathrm{v} .24 \mathrm{~V})$		voltage drop of ESS20 and tolerance of trip point (typically $1.1 \times \mathrm{I}_{\mathrm{N}}=1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}$) have been taken into account.							
ESS20-selected rating I_{N} (in A) e. g. trip current $\mathrm{I}_{\mathrm{ab}}=1.25 \times \mathrm{I}_{\mathrm{N}}$ (in A) $R_{\text {max }}$ in Ohm $=\left(U_{S} / I_{a b}\right)-0.050$		3	6						
		3.75	7.5		0 trips	$\text { r } 3 \mathrm{~s}$			
		5.07	2.51						
The ESS20 reliably trips from 0 Ohm to max. circuitry resistance $\mathbf{R}_{\max }$									
	Cable cross section \mathbf{A} in $\mathrm{mm}^{2} \rightarrow$		0.14	0.25	0.34	0.5	0.75	1	1.5
	cable length \mathbf{L} in meter (= single length)	cable resistance in $\mathrm{Ohm}=\left(\mathrm{R}_{0} \times 2 \times \mathrm{L}\right) / \mathrm{A}$				\downarrow	γ	\downarrow	γ
	5		1.27	0.71	0.52	0.36	0.24	0.18	0.12
	10		2.54	1.42	1.05	0.71	0.47	0.36	0.24
	15		3.81	2.14	1.57	1.07	0.71	0.53	0.36
	20		5.09	2.85	2.09	1.42	0.95	0.71	0.47
	25		6.36	3.56	2.62	1.78	1.19	0.89	0.59
	30		7.63	4.27	3.14	2.14	1.42	1.07	0.71
	35		8.90	4.98	3.66	2.49	1.66	1.25	0.83
	40		10.17	5.70	4.19	2.85	1.90	1.42	0.95
	45		11.44	6.41	4.71	3.20	2.14	1.60	1.07
	50		12.71	7.12	5.24	3.56	2.37	1.78	1.19
	75		19.07	10.68	7.85	5.34	3.56	2.67	1.78
	100		25.34	14.24	10.47	7.12	4.75	3.56	2.37
	125		31.79	17.80	13.09	8.90	5.93	4.45	2.97
	150		38.14	21.36	15.71	10.68	7.12	5.34	3.56
	175		44.50	24.92	18.32	12.46	8.31	6.23	4.15
	200		50.86	28.48	20.94	14.24	9.49	7.12	4.75
	225		57.21	32.04	23.56	16.02	10.68	8.01	5.34
	250		63.57	35.60	26.18	17.80	11.87	8.90	5.93
Example 1:	max. length at $1.5 \mathrm{~mm}^{2}$ and	3 A		\rightarrow					
Example 2:	max. length at $1.5 \mathrm{~mm}^{2}$ and	6 A		\rightarrow					
Example 3:	mixed wiring: (Control cabinet - sensor/actuator level)		$\mathrm{R} 1=40 \mathrm{~m}$ in $1.5 \mathrm{~mm}^{2}$ and $\mathrm{R} 2=5 \mathrm{~m}$ in $0.25 \mathrm{~mm}^{2}$:					$36 \text { Ohr }$	

Accessories for ESS20-1..

Description

Module 17plus is a power distribution system for use with electronic circuit breaker ESS20-1..
Each module accommodates two breakers with an individual housing width of only 12.5 mm and fits onto all industry standard mounting rails.
The two-way modules can be interconnected to provide as many ways as required with a terminal block fitted at each end for connection of signalling circuits. A distribution busbar can be fitted on the supply side of the modules (positive pole) though each pole of multipole circuit breakers must be individually connected.
Electrical connections are by means of spring-loaded terminals. The reference potential for the ESS20-1.. (GND pin 11) is also looped through and connected to the terminals at the sides.
The integral signal output SF of the ESS20-124 may be picked off at terminal 12 of the corresponding channel (single signalisation). The reset input RE may be connected via terminal 13 or 14 .
Meets the requirements of UL60950.

Ordering information

17PLUS-Q02-00	Module 17plus, centre piece, two-way
17PLUS-QA0-LR	one each left- and right-side terminal block for supply feed from the side by means of screw terminal, connection of signalisation etc.

Pin configuration, fitted with ESS20-1..

ESS20-124	Mod $17 \mathrm{pl}$		
LINE (+)	(1)	च	operating voltage PLUS, DC 24 V operating voltage MINUS reset input RE
GND	(11)	$\underline{\square}$	
RE	(13)	$\underline{\square}$	
RE	(14)	$\underline{ }$	reset input RE
SF	(12)	\square	signal output SF
LOAD (+)	(2)	\square	protected load output

Technical data

Connection	Spring-loaded terminals for solid conductors and stranded cables with and without wire end ferrules. Please use appropriate screw driver size (SD) for removing the spring loaded terminals.
$\underline{\text { LINE feed (1) }}$	spring-loaded terminals for
LOAD output (2)	$1.5-10 \mathrm{~mm}^{2}$ (AWG 10), SD 2 (0.8×4.0) spring-loaded terminals for $0.25-4 \mathrm{~mm}^{2}$ (AWG 12), SD 1 (0.6×3.5)
Reference potential GND/ group signal	
terminals (11 or 13, 14):	spring-loaded terminals for $0.25-2.5 \text { mm² }^{2} \text { AWG 14), SD } 1 \text { (0.6x3.5) }$
individual signal	
terminal (12)	spring-loaded terminal for
	0.25-1.5 mm² (AWG 16), SD 0 (0.4x2.5)

Test probe for testing the group signal for line interruption: $\leq 2 \mathrm{~mm} \varnothing$
Voltage rating

(without ESS20-1..):	AC 433 V ; DC 65 V
Current rating (without ESS20-1..)	
LINE feed (1)	50 A
LOAD output (2)	25 A
Reference potential GND (11)	10 A
Individual signal (12)	1 A (with ESS20-1..: 0.5 A)
Group signal /(13-14)	1 A (with ESS20-1..: 0.5 A)
Internal resistance values (without ESS20-1..)	
LINE-LOAD (1-2)	$\leq 5 \mathrm{~m} \Omega$
Group signal (13-14) per module	$\leq 8 \mathrm{~m} \Omega$ per pole
	$+5 \mathrm{~m} \Omega$ for each additional module

Busbar for power distribution
insulated busbar
(blue or red): non-insulated busbar: $I_{\max }$ (The non-insulated busbar, too, meets brush contact safety standards when fitted.) Dielectric strength of Module 17plus (without ESS20-1..) between main circuits (without busbar): $1,500 \mathrm{~V}$ main circuit to auxiliary circuit: $1,500 \mathrm{~V}$ between auxiliary circuits: $1,500 \mathrm{~V}$ Mass: Module 17plus (centre piece) approx. 85 g terminal blocks (pair) approx. 30 g

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Connection diagram pour ESS20-124

Installation example

Installation:
1 Clip modules onto DIN rails.
2 Push modules together (side-by-side).
Snap on right-side and left-side terminal blocks.
4 Cut busbar to required length and fit on supply side of the modules.
5 Connect line feed with spring-loaded terminals.
6 Plug in ESS20-1...

Connection and disconnection of cables with screw driver

Accessories

Busbar 32 A

X 22200501 blue insulation, $500 \mathrm{~mm} / 19.68 \mathrm{in}$.
X 22200502 red insulation, $500 \mathrm{~mm} / 19.68 \mathrm{in}$.
X 22200503 grey insulation, $500 \mathrm{~mm} / 19.68$ in.

Busbar 50 A
Y 30701601 non-insulated, 500 mm/19.68 in.

Busbar 50 A
Y 30701611 non-insulated, 500 mm/19.68 in.

End bracket
X 22200401

Jumper
X 22206601
blade terminals DIN 46244-A6.3-0.8
erminals $1+2$
no connection

$$
\begin{aligned}
& \text { terminals } 6+7 \\
& \text { bridgadd }
\end{aligned}
$$ (QC .250)

Labels
marking area $6 \times 10 \mathrm{~mm}$
(packing unit 10 pcs $=1$ strip)
part. no. Y 30794261

Screw terminal for busbar
X 21115601 non insulated

Accessories for ESS20-1..

Retaining clip Y 30775401

Accessories for ESS20-1..

ESS20 with retaining clip Y 30775401
for power distribution system module 17plu

Removal of retaining clip Y 30775401

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Busbar (10-way) (supplied as a complete package) for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for busbar (10-way) Y 30382401

Pin selection, fitted with ESS20-124

ESS20-124 17-P10-Si

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications withou notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

层E-TAO Electronic Circuit Protector ESX10

Description

Electronic circuit protector type ESX10 is designed to ensure selective disconnection of DC 24 V load systems.

DC 24 V power supplies, which are widely used in industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads. As well as an unidentified failure this also means stoppage of the whole system.

Through selective disconnection the ESX10 responds much faster to overload or short circuit conditions than the switch-mode power supply. This is achieved by active current limitation. The ESX10 limits the highest possible current to values between 1.3 to 1.8 times the selected rated current of the circuit protector. Thus it is possible to switch on capacitive loads of up to $\mathbf{2 0 , 0 0 0} \boldsymbol{\mu} \mathbf{F}$ lamp loads, but they are disconnected only in the event of an overload or short circuit.

For optimal alignment with the characteristics of the application the current rating of the ESX10 can be selected in fixed values from 0.5 A... 12 A . Failure and status indication are provided by a multicolour LED and an integral short-circuit-proof status output or a potential-free signal contact.

The ESX10, with a width of only 12.5 mm , can be plugged into the E-T-A power distribution socket Module 17plus ensuring ease of installation and saving space in control cabinets.
Upon detection of overload or short circuit in the load circuit, the MOSFET of the load output will be blocked to interrupt the current flow. The MOSFET and the load circuit may be re-activated via the remote electronic reset input or manually by means of the ON/OFF button. When starting up the system, the load circuit may also be manually disconnected.

Features

- Selective load protection, electronic trip characteristics.
- Active current limitation for safe connection of capacitive loads up to $20,000 \mu \mathrm{~F}$ and on overload/short circuit.
- Current ratings 0.5 A... 12 A .
- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$ plus, even with long load lines or small cable cross sections (see table 3).
- Manual ON/OFF button (S1).
- Control input IN+ for remote ON/OFF signal (option)
- Clear status and failure indication through LED, status output SF or Si contact F .
- Electronic reset input RE (option).
- Integral fail-safe element.
- Width per unit only 12.5 mm .
- Plug-in mounting utilising power distribution system Module 17plus or SVSxx optionally (see product group 7)

Approvals

Authority	Voltage rating	Current ratings
UL 2367	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$

Attention:

- The user should ensure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESX10 used.
- Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the ESX10.

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Operating data	
Operating voltage U_{S}	DC 24 V (18... 32 V)
Current rating I_{N}	fixed current ratings: $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$, $4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 12 \mathrm{~A}$
Closed current I_{0}	ON condition: typically $20 \ldots 30 \mathrm{~mA}$ depending on signal output
Status indication by means of	- multicolour LED: GREEN: unit is ON, power-MOSFET is switched on - status output SF ON, supplies + DC 24 V ORANGE: in the event of overload or short circuit until electronic disconnection RED: - unit electronically disconnected - load circuit/Power-MOSFET OFF OFF: - manually switched off (S1 = OFF) or device is dead - undervoltage ($\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$) - after switch-on till the end of the delay period - status output SF (option) - potential-free signal contact F (option) - ON/OFF/ condition of switch S1
Load circuit	
Load output	Power-MOSFET switching output (high side switch)
Overload disconnection	typically $1.1 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$
Short-circuit current I_{K}	active current limitation (see table 1)
Trip time for electronic disconnection	see time/current characteristics typically 3 s at $\mathrm{I}_{\text {Load }}>1.1 \times \mathrm{I}_{\mathrm{N}}$ typically $3 \mathrm{~s} \ldots 100 \mathrm{~ms}$ at $\mathrm{I}_{\text {Load }}>1.8 \times \mathrm{I}_{\mathrm{N}}$ (or $1.5 \times \mathrm{I}_{\mathrm{N}} / 1.3 \times \mathrm{I}_{\mathrm{N}}$)
Temperature disconnection	internal temperature monitoring with electronic disconnection
Low voltage monitoring load output	with hysteresis, no reset necessary load "OFF" at $U_{S}<8 \mathrm{~V}$
Starting delay $\mathrm{t}_{\text {start }}$	typically 0.5 sec after every switch-on and after applying U_{S}
Disconnection of load circuit	electronic disconnection
Free-wheeling circuit	external free-wheeling diode recommended with inductive load
Several load outputs must not be connected in parallel	

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\left.\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Status output SF	ESX10-104/-106/-124/-127
Electrical data	plus-switching signal output, connects U_{S} to terminal 12 of module 17plus nominal data: DC $24 \mathrm{~V} /$ max. 0.2 A (short circuit proof) status output is internally connected to GND with a 10 kOhm resistor
Status OUT	ESX10-104/-106/-124 (signal status OUT), at $U_{S}=+24 \mathrm{~V}$ $+24 \mathrm{~V}=\mathrm{S} 1$ is ON , load output connected through $\mathrm{OV}=\mathrm{S} 1$ is ON , load output blocked and/or switch S 1 is OFF
Status OUT	ESX10-127 (signal status OUT inverted), at $U_{S}=+24 \mathrm{~V}$ $+24 \mathrm{~V}=\mathrm{S} 1$ is ON, load output blocked, red LED lighted $\mathrm{OV}=\mathrm{S} 1$ is ON , load output connected through and / or switch S1 is in OFF position
OFF condition	0 V level at status output when: switch S1 is in ON position, but device is still in switch-on delay - switch S1 is OFF, or control signal OFF, device is switched off - no operating voltage U_{S}
Signal output F	ESX10-101/-102/-103/-105/-106/-115/-125
Electrical data	potential-free signal contact max. DC $30 \mathrm{~V} / 0.5 \mathrm{~A}, \mathrm{~min} .10 \mathrm{~V} / 10 \mathrm{~mA}$
ON condition LED green	voltage U_{S} applied, switch $S 1$ is in $O N$ position no overload, no short circuit
OFF condition LED off	- device switched off (switch S1 is in OFF position) - no voltage U_{S} applied
Fault condition LED orange	overload condition $>1.1 \times I_{N}$ up to electronic disconnection
Fault condition LED red	electronic disconnection upon overload or short circuit
	device switched off with control signal (switch S1 is in ON position)
ESX10-101	single signal, make contact contact SC/SO-SI open
ESX10-102	single signal, break contact contact SC/SO-SI closed
ESX10-103	group signal change-over contact contact SC-SO open, SC-SI closed
ESX10-105/-106/-115/-125	group signal, make contact contact SC-SO open
Fault	signal output fault conditions: - no operating voltage U_{S} - ON/OFF switch S1 is in OFF position - red LED lighted (electronic disconnection)

Table 1: voltage drop, current limitation, max. load current

current rating I_{N}	typically voltage drop $U_{0 N}$ at I_{N}	active current limitation (typically)	max. load current at 100% ON duty	
			$\mathrm{T}_{U}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{U}=50{ }^{\circ} \mathrm{C}$
0.5 A	70 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	120 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	150 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
12 A	180 mV	$1.3 \times \mathrm{I}_{\mathrm{N}}$	12 A	10.8 A

Attention: when mounted side-by-side without convection the ESX10-0.. should not carry more than 80% of its rated load with 100% ON duty due to thermal effects.

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\left.\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Reset input RE ESX10-124/-125/-127

Electrical data

Reset signal RE
(= terminal 13,14 or 12 of Module 17plus)

Caution: unused slots have to be fitted with jumpers

	The reset simultaneously affects all blocked ESX10-124/-127 channels of the power distribution system, all switched on ESX10-124/ -127 channels remain unaffected. With type ESX10-125 the reset only affects the device concerned. By connecting the individual terminals 12 of the Module 17plus a joint reset signal for all ESX10-125 may be generated.
EsX10-115	

General data

Fail-safe element:	backup fuse for ESX10 not required because of the integral redundant fail-safe element
Blade terminals	6.3 mm to DIN 46244-A6.3-0.8
Housing	moulded
Mounting	plug-in mounting utilising power distribution system Module 17plus or SVSxx
Ambient temperature	$0 \ldots+50^{\circ} \mathrm{C}$ (without condensation, see EN 60204-1)
Storage temperature	$-20 . .+70^{\circ} \mathrm{C}$
Humidity	$96 \mathrm{hrs} / 95 \% \mathrm{RH} / 40^{\circ} \mathrm{C}$ to IEC 60068-2-78, test Cab. climate class 3 K3 to EN 60721
Vibration	3 g , test to IEC 60068-2-6 test Fc
Degree of protection	housing: IP30 DIN 40050 terminals: IP00 DIN 40050
EMC (EMC directive, CE logo)	emission: EN 61000-6-3 susceptibility: EN 61000-6-2
Insulation co-ordination (IEC 60934)	$0.5 \mathrm{kV} / 2$ pollution degree 2 re-inforced insulation in operating area
dielectric strength	max. DC 32 V (load circuit)
Insulation resistance (OFF condition)	n/a, only electronic disconnection
Approvals	UL 2367, File E306740 Solid State Overcurrent Protectors CE logo
Dimensions (W x H x D)	$12.5 \times 70 \times 60 \mathrm{~mm}$
Mass	approx. 40 g

园E-TAO Electronic Circuit Protector ESX10

Ordering information

Type No.
ESX10 Electronic Circuit Protector for DC 24 V applications

Description of ESX10 signal inputs and outputs (wiring diagrams) see next page.

Please note:

- The user should ensure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESX10 used.
- Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the ESX10.

Schematic diagram ESX10-124

ESX10-124-...

Terminal wiring diagram ESX10-124

Table 2: ESX10 - product version

version	signal input		signal output					
			signal output F				status output SF	
ESX10-...	control input ON/OFF +24 V Control IN+	$\begin{gathered} \text { reset input } \\ +24 \mathrm{~V} \\ \text { RE } \end{gathered}$	single signal N/O	single signal N/C	group signal N/O	group signal change-over	$\begin{aligned} & \text { status OUT } \\ & +24 \mathrm{~V}=\mathrm{OK} \end{aligned}$	$\begin{gathered} \text { status } \overline{\text { OUT }} \\ 0 \mathrm{~V}=\mathrm{OK} \end{gathered}$
-100								
-101			x					
-102				x				
-103						x		
-104							x	
-105					x			
-106					X		x	
-115	x				x			
-124		x					x	
-125		x			x			
-127		x						x

ETVAO

ESX10 Signal inputs / outputs (wiring diagram)

ESX10 signal inputs / outputs (wiring diagrams)

Signal contacts are shown in the OFF or fault condition.

ESX10-100

without signal input/output

ESX10-103
without signal input
with signal output F (group signal, change-over)

operating condition: SC/SO closed, SC-SI open fault condition: SC/SO open, SC-SI closed

ESX10-106

without signal inpu
with signal output F (group signal, N / O) with status output SF ($+24 \mathrm{~V}=$ load output ON)

operating condition: SC-SO closed
fault condition: SC-SO open

ESX10-125-...
with reset input RE (+DC 24V \downarrow)
with signal output F (group signal, N/O)

operating condition: SC-SO closed fault condition: SC-SO open

ESX10-101
without signal input
with signal output F (single signal, N / O)

operating condition: SC/SO-SI closed fault condition: SC/SO-SI open

ESX10-104
without signal input
with status output SF ($+24 \mathrm{~V}=$ load output ON)

operating condition: $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$
fault condition:

ESX10-115-..
with control input IN+ (+DC 24V)
with signal output F (group signal, N / O)

operating condition: SC-SO closed
fault condition: SC-SO open

ESX10-127-..
with reset input RE (+DC 24V \downarrow)
with status output SF inverted, OV = load output ON

ESX10-102
without signal input
with signal output F (single signal, N / C)

operating condition: SC/SO-SI open fault condition: SC/SO-SI closed

ESX10-105
without signal input
with signal output F (group signal, N/O)

operating condition: SC-SO closed fault condition: SC-SO open

ESX10-124-..
with reset input RE (+DC 24V \downarrow)
with status output SF ($+24 \mathrm{~V}=$ load output ON)

operating condition: $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$
fault condition:
SF 0 V

Time/Current characteristic curve ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

${ }^{* 1}$) current limitation typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{~A} \ldots 6 \mathrm{~A}$ current limitation typically $1.5 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A}$ or 10 A current limitation typically $1.3 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=12 \mathrm{~A}$

- The trip time is typically 3 s in the range between 1.1 and $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$).
- Electronic current limitation occurs at typically $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$) which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload before disconnection will not exceed $1.8 \times \mathrm{I}_{N}{ }^{* 1}$) times the current rating. Trip time is between 100 ms (short circuit current I_{K}) and 3 sec (at overload with high line attenuation).
- Without this current limitation a considerably higher overload current would flow in the event of an overload or short circuit.

Table 3: Reliable trip of ESX10

Reliable trip of ESX10 with different cable lengths and cross sections

Dimensions

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Accessories for ESX10

Description

Module 17plus is a power distribution system for use with electronic circuit protectors ESX10.
Each module accommodates two protectors with an individual housing width of only 12.5 mm and fits onto all industry standard mounting rails.
The two-way modules can be interconnected to provide as many ways as required with a terminal block fitted at each end for connection of signalling circuits. A distribution busbar can be fitted on the supply side of the modules (positive pole) though each pole of multipole circuit breakers must be individually connected.
Electrical connections are by means of spring-loaded terminals. The reference potential for the ESX10 (GND pin 11) is also looped through and connected to the terminal blocks at the sides.
The integral status output SF of the ESX10-104/-106/-124/-127 can be tapped at terminal 12 of the relevant channel (single signalisation). The reset input RE may be connected via terminal 13 or 14 (ESX10-124/-127) or terminal 12 (ESX10-125). The integral control input IN+ of ESX10-115 is connected via terminal 12.
Depending on the version a potential-free signal contact is available (ESX10-101/-102/-103/-104/-105/-106/-115/-125).
Meets the requirements of UL60950.

Ordering information

17PLUS-Q02-00	Module 17plus, centre piece, two-way
17PLUS-QA0-LR	one each left- and right-side terminal block for supply feed from the side by means of screw terminal, connection of signalisation etc.

Pin configuration, fitted with ESX10-124 (Example)

ESX10-124	Modul 17 plus		
LINE (+)	(1)	\square	operating voltage PLUS, DC 24 V
GND	(11)	—.	operating voltage MINUS
RE	(13)	$\underline{ }$	reset input RE
RE	(14)	"	reset input RE
SF	(12)	$\underline{ }$	status output SF
LOAD (+)	(2)	—	protected load output

Technical data

Connection	Spring-loaded terminals for solid conductors and stranded cables with and without wire end ferrules. Please use appropriate screw driver size (SD) for removing the spring loaded terminals. spring-loaded terminals for
LOAD output (2)	$1.5-10 \mathrm{~mm}^{2}$ (AWG 10), SD 2 (0.8×4.0) spring-loaded terminals for $0.25-4 \mathrm{~mm}^{2}$ (AWG 12), SD 1 (0.6x3.5)
Reference potential GND/ group signal	
terminals (11 or 13, 14):	spring-loaded terminals for $0.25-2.5 \text { mm² }^{(A W G ~ 14), ~ S D ~} 1 \text { (0.6x3.5) }$
single signal	
terminal (12)	spring-loaded terminal for
	0.25-1.5 mm² (AWG 16), SD 0 (0.4x2.5)

Test probe for testing the group signal for line interruption: $\leq 2 \mathrm{~mm} \varnothing$

Voltage rating (without ESX10)	AC 433 V ;
Current rating (without ESX10)	
LINE feed (1)	50 A
LOAD output (2)	25 A
Reference potential GND (11)	10 A
single signal (12)	1 A (with E
Group signal /(13-14)	1 A (with E
Internal resistance values (without ESX10)	
LINE-LOAD (1-2)	$\leq 5 \mathrm{~m} \Omega$
Group signal (13-14) per module	$\leq 8 \mathrm{~m} \Omega$ per $+5 \mathrm{~m} \Omega$ for module
Busbar for power distribution insulated busbar	
(blue or red):	$I_{\text {max }} 32 \mathrm{~A}$
non-insulated busbar:	$I_{\text {max }} 50 \mathrm{~A}$

(The non-insulated busbar, too, meets brush contact safety standards when fitted.)
Dielectric strength of Module 17plus (without ESX10)
between main circuits (without busbar): 1,500 V
main circuit to auxiliary circuit: $\quad 1,500 \mathrm{~V}$
between auxiliary circuits:
$1,500 \mathrm{~V}$
Mass: Module 17plus (centre piece) approx. 85 g
terminal blocks (pair) approx. 30 g

Dimensions

[^23]Installation example

Installation:

1 Clip modules onto DIN rails.
2 Push modules together (side-by-side)
3 Snap on right-side and left-side terminal blocks
4 Cut busbar to required length and fit on supply side of the modules.
5 Connect line feed with spring-loaded terminals.
6 Plug in ESX10.

Connection and disconnection of cables with screw driver

Connection diagram for ESX10-...

Module 17plus with ESX10-100

Module 17plus with ESX10-102

Module 17plus with ESX10-104

Module 17plus with ESX10-101

Module 17plus with ESX10-103

Module 17plus with ESX10-105

Module 17plus with ESX10-106

$$
\begin{array}{ll}
11 & \text { GND } \\
12 & \text { status indication } S F+24 \mathrm{~V}=\mathrm{OK} \\
13,14 & \text { terminal group signalisation (N/O) }
\end{array}
$$

Module 17plus with ESX10-124

11	GND
12	status indication $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$
13,14	reset input RE (group reset), +24 V falling edge

Module 17plus with ESX10-127

Module 17plus with ESX10-115

Module 17plus with ESX10-125

EE-TA゚ ESX10-Accessories: Module 17plus

Accessories for ESX10

Busbar 32 A

X 22200501 blue insulation, $500 \mathrm{~mm} / 19.68$ in
X 22200502 red insulation, $500 \mathrm{~mm} / 19.68$ in.
X 22200503 grey insulation, $500 \mathrm{~mm} / 19.68$ in.

Busbar 50 A
Y 30701601 non-insulated, $500 \mathrm{~mm} / 19.68$ in.

Busbar 50 A
Y 30701611 non-insulated, 500 mm/19.68 in.

End bracket
X 22200401

Jumper
X 22206601

Labels
marking area $6 \times 10 \mathrm{~mm}$
(packing unit 10 pcs $=1$ strip)
part. no. Y 30794261
Screw terminal for busbar X 21115601 non insulated

Accessories for ESX10

Retaining clip Y 30775401

Mounting of retaining clip

ESX10 with retaining clip Y 30775401
for power distribution system module 17plus

Removal of retaining clip Y 30775401

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

园ETR ESX10 - Accessories for ESX10

2-way mounting socket
 23-P10-Si 63-P10-S

(retaining clip Y 30058103 available on request)

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$, (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), red (up to 20 A max. load)
X 210588 04/ 2.5 mm2, (AWG 14), blue (up to 20 A max. load)

Pin selection, fitted with ESX10-124 (Example)

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right.$)

Table 4: ESX10-... - Pin assignment 17-P10-Si

17-P10-Si	ESX10-										
Pins	-100	-101	-102	-103	-104	-105	-106	-115	-124	-125	-127
[2(k)]	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \mathrm{DC}+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { LINE (+) } \\ & \text { DC }+24 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { LINE (+) } \\ \text { DC }+24 \mathrm{~V} \end{array}$
[12]	GND										
[24]		single SF N/O termina	single SF N/C terminal	group SF changeover terminal		group SF N/O	group SF N/O	group SF N/O	$\begin{aligned} & \text { reset IN+ } \\ & +24 V_{\downarrow} \end{aligned}$	group SF N/O	$\begin{aligned} & \begin{array}{l} \text { reset IN+ } \\ +24 \mathrm{~V} \downarrow \end{array} \end{aligned}$
[2(i)]	not assigned										
[23]		single SF N/O termina	single SF N/C terminal	group SF changeover N/O		$\begin{aligned} & \text { group SF } \\ & \text { N/O } \end{aligned}$	$\begin{aligned} & \text { group SF } \\ & \text { N/O } \end{aligned}$	$\begin{aligned} & \text { group SF } \\ & \text { N/O } \end{aligned}$	$\begin{aligned} & \text { reset IN+ } \\ & +24 \mathrm{~V} \downarrow \end{aligned}$	group SF N/O	$\begin{aligned} & \text { reset IN+ } \\ & +24 \mathrm{~V} \downarrow \end{aligned}$
[11]		single SF N/O output	single SF N/C output	group SF changeover N/C	$\begin{aligned} & \text { status OUT } \\ & +24 \mathrm{~V}=\mathrm{OK} \end{aligned}$		$\begin{aligned} & \text { status OUT } \\ & +24 \mathrm{~V}=\mathrm{OK} \end{aligned}$	control signal IN+ $+24 \mathrm{~V}=\mathrm{ON}$	$\begin{aligned} & \text { status OUT } \\ & +24 \mathrm{~V}=\mathrm{OK} \end{aligned}$	$\begin{aligned} & \text { reset IN+ } \\ & +24 \mathrm{~V} \downarrow \end{aligned}$	$\begin{aligned} & \hline \text { status } \overline{\text { OUT }} \\ & +0 \mathrm{~V}=\mathrm{OK} \end{aligned}$
[1]	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)	LOAD (+)

E ETRAC Electronic Circuit Protector ESX10-T

Description

Electronic circuit protector type ESX10-T is designed to ensure selective disconnection of DC 24 V load systems.

DC 24 V power supplies, which are widely used in industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads. As well as an unidentified failure this also means stoppage of the whole system.

Through selective disconnection the ESX10-T responds much faster to overload or short circuit conditions than the switch-mode power supply. This is achieved by active current limitation. The ESX10-T limits the highest possible current to 1.3 to 1.8 times the selected rated current of the circuit protector. Thus it is possible to switch on capacitive loads of up to $\mathbf{2 0 , 0 0 0} \mu \mathrm{F}$, but they are disconnected only in the event of an overload or short circuit.

For optimal alignment with the characteristics of the application the current rating of the ESX10-T can be selected in fixed values from 0.5 A... 12 A . Failure and status indication are provided by a multicolour LED and an integral short-circuit-proof status output or a potential-free signal contact. Remote operation is possible by means of a remote reset signal or a remote ON/OFF control signal. The manual ON/OFF button allows separate actuation of individual load circuits.

The ESX10-T, with a width of only 12.5 mm , can be snapped onto symmetrical rails ensuring ease of installation and saving space in control cabinets.
Upon detection of overload or short circuit in the load circuit, the MOSFET of the load output will be blocked to interrupt the current flow. The load circuit can be re-activated via the remote electronic reset input, control input or manually by means of the ON/OFF button.

Features

- Selective load protection, electronic trip characteristics.
- Active current limitation for safe connection of capacitive loads up to $20,000 \mu \mathrm{~F}$ and on overload/short circuit.
- Current ratings $0.5 \mathrm{~A} . .12 \mathrm{~A}$.
- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$ plus, even with long load lines or small cable cross sections (see table 3).
- Manual ON/OFF button (S1).
- Control input IN+ for remote ON/OFF signal (option).
- Electronic reset input RE (option).
- Clear status and failure indication through LED, status output SF or Si contact F.
- Integral fail-safe element adjusted to current rating.
- Width per unit only 12.5 mm .
- Rail mounting
- Ease of wiring through busbar LINE+ and 0 V as well as signal bars and bridges.

Approvals

Authority	Voltage rating	Current ratings
UL 2367	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$
UL 1604		
(class I, div. 2, group A, B, C, D)	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$
UL 508 / cUL 508	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$
CSA C22.2 No: 213 (class I, division 2) pending		
CSA C22.2 No: 142 pending		

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Operating data

Operating voltage U_{S}	DC $24 \mathrm{~V}(18 \ldots .32 \mathrm{~V})$			
Current rating I_{N}	fixed current ratings: $0.5,1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$,			
$6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 12 \mathrm{~A}$,		ON condition: typically $20 \ldots 30 \mathrm{~mA}$ depending on signal output
:---	:---			
Closed current I_{0}	- multicolour LED:			

by means of \quad GREEN: unit is ON, power-MOSFET is switched on

- status output SF ON, supplies + DC 24 V
ORANGE: in the event of overload or short circuit until electronic disconnection
RED: - unit electronically disconnected
- load circuit/Power-MOSFET OFF
OFF: - manually switched off (S1 = OFF) or device is dead - undervoltage ($\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$)
- after switch-on till the end of the delay period
- status output SF (option)
- potential-free signal contact F (option)
- ON/OFF/ condition of switch S1

Load circuit	
Load output	Power-MOSFET switching output (high side switch)
Overload disconnection	typically $1.1 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$
Short-circuit current I_{K}	active current limitation (see table 1)
Trip time for electronic disconnection	see time/current characteristics typically 3 s at $\mathrm{I}_{\text {Load }}>1.1 \times \mathrm{I}_{\mathrm{N}}$ typically $3 \mathrm{~s} . . .100 \mathrm{~ms}$ at $\mathrm{I}_{\text {Load }}>1.8 \times \mathrm{I}_{\mathrm{N}}$ (or $\left.1.5 \times \mathrm{I}_{\mathrm{N}} / 1.3 \times \mathrm{I}_{\mathrm{N}}\right)$
Temperature disconnection	internal temperature monitoring with electronic disconnection
Low voltage monitoring	with hysteresis, no reset required load "OFF" at $U_{\mathrm{S}}<8 \mathrm{~V}$
load output	typically 0.5 sec after every switch-on and after applying U_{S}
Starting delay $\mathrm{t}_{\text {start }}$	external free-wheeling diode recommended with inductive load
Disconnection of load circuit electronic disconnection	
Free-wheeling circuit	
Several load outputs must not be connected in parallel	

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\left.\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Status output SF	ESX10-TB-114/-124/
Electrical data	plus-switching signal output, connects U_{S} to terminal 12 of module 17plus nominal data: DC $24 \mathrm{~V} / \max .0 .2 \mathrm{~A}$ (short circuit proof) status output is internally connected to GND with a 10 kOhm resistor
Status OUT	ESX10-TB-114/-124 (signal status OUT), at $\mathrm{U}_{\mathrm{S}}=+24 \mathrm{~V}$ $+24 \mathrm{~V}=\mathrm{S} 1$ is ON , load output connected through $\mathrm{OV}=\mathrm{S} 1$ is ON , load output blocked and/or switch S1 is OFF red LED lighted
OFF condition	0 V level at status output when: switch S 1 is in ON position, but device is still in switch-on delay - switch S1 is OFF, or control signal OFF, device is switched off - no operating voltage U_{S}
Signal output F	ESX10-TB-101/-102
Electrical data	potential-free signal contact max. DC $30 \mathrm{~V} / 0.5 \mathrm{~A}$, min. $10 \mathrm{~V} / 10 \mathrm{~mA}$
ON condition LED green	voltage U_{S} applied, switch S 1 is in ON position no overload, no short circuit
OFF condition LED off	- device switched off (switch S1 is in OFF position) - no voltage U_{S} applied
Fault condition LED orange	overload condition $>1.1 \times I_{N}$ up to electronic disconnection
Fault condition LED red	electronic disconnection upon overload or short circuit
	device switched off with control signal (switch S1 is in ON position)
ESX10-TB-101	single signal, make contact contact SC/SO-SI open
ESX10-TB-102	single signal, break contact contact SC/SO-SI closed
Fault	signal output fault conditions: - no operating voltage U_{S} - ON/OFF switch S1 is in OFF position - red LED lighted (electronic disconnection)
Reset input RE	ESX10-TB-124/-127
Electrical data	voltage: max. +DC 32 V high > DC $8 \mathrm{~V} \leq \mathrm{DC} 32 \mathrm{~V}$ low $\leq \mathrm{DC} 3 \mathrm{~V}>0 \mathrm{~V}$ power consumption typically 2.6 mA (+DC 24 V) min. pulse duration typically 10 ms
Reset signal RE (terminal 22)	The electronically blocked ESX10-TB-124/-127 may remotely be reset via an external momentary switch due to the falling edge of $\mathrm{a}+24 \mathrm{~V}$ pulse. A common reset signal can be applied to several devices simultaneously. Switched on devices remain unaffected.
Control input IN+	ESX10-TB-114
Electrical data Control signal $\operatorname{IN}+$ (terminal 21)	see reset input RE +24 V level (HIGH): device will be switched on by a remote ON/OFF signal 0 V level (LOW): device will be switched off by a remote ON/OFF signal
Switch S1 ON/OFF	unit can only be switched on with S1 if a HIGH level is applied to IN+

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

General data

Fail-safe element:	backup fuse for ESX10-T not required because of the integral redundant fail-safe element
Terminals	LINE+ / LOAD+ / OV

screw terminals
max. cable cross section
flexible with wire end ferrule w/wo plastic sleeve $0.5-10 \mathrm{~mm}^{2}$
multi-lead connection
(2 identical cables)
rigid/flexible
$0.5-4 \mathrm{~mm}^{2}$
flexible with wire end ferrule without plastic sleeve $0.5-2,5 \mathrm{~mm}^{2}$
flexible with TWIN wire end ferrule with plastic sleeve $0.5-6 \mathrm{~mm}^{2}$ wire stripping length

10 mm
tightening torque (EN 60934) $1.5-1.8 \mathrm{Nm}$

Terminals	aux. contacts
screw terminals max. cable cross section flexible with wire end fer wire stripping length tightening torque (EN 60	M 3 le w/wo plastic sleeve $0.25-2.5 \mathrm{~mm}^{2}$ 8 mm 34) 0.5 Nm
Housing material	moulded
Mounting	symmetrical rail to EN 50022-35x7.5
Ambient temperature	$0 \ldots+50^{\circ} \mathrm{C}$ (without condensation, see EN 60204-1)
Storage temperature	$-20 . .+70{ }^{\circ} \mathrm{C}$
Humidity	$96 \mathrm{hrs} / 95 \% \mathrm{RH} / 40^{\circ} \mathrm{C}$ to IEC 60068-2-78, test Cab. climate class 3K3 to EN 60721
Vibration	3 g , test to IEC 60068-2-6 test Fc
Degree of protection	housing: IP20 DIN 40050 terminals: IP20 DIN 40050
EMC (EMC directive, CE logo)	emission: EN 61000-6-3 susceptibility: EN 61000-6-2
Insulation co-ordination (IEC 60934)	$0.5 \mathrm{kV} / 2$ pollution degree 2 re-inforced insulation in operating area
dielectric strength	max. DC 32 V (load circuit)
Insulation resistance (OFF condition)	n/a, only electronic disconnection
Approvals	UL 2367, File E306740, Solid State Overcurrent Protectors UL 1604, File E320024, (class I, division 2, groups A, B, C, D) UL 508 / cUL 508, File E322549 CSA C22.2 No: 213 (class I, division 2) pending CSA C22.2 No: 142 pending CE logo
Dimensions (W \times H x D)	$12.5 \times 80 \times 83 \mathrm{~mm}$
Mass	approx. 65 g

Table 1: voltage drop, current limitation, max. load current

current rating	typically voltage drop	active	${ }^{\circ}$	\%
I_{N}	U_{ON} at I_{N}	limitation (typically)	$\mathrm{T}_{\text {ambient }}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {ambient }}=50^{\circ} \mathrm{C}$
0.5 A	70 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	120 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	150 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
12 A	180 mV	$1.3 \times \mathrm{I}_{\mathrm{N}}$	12 A	10.8 A
Attention: when mounted side-by-side without convection the ESX10-T should not carry more than 80% of its rated load with 100% ON duty due to thermal effects.				

줄ㅌT…A Electronic Circuit Protector ESX10-T

Ordering information

Type No.
ESX10 Electronic Circuit Protector, with current limitation
Mounting and design
TA rail mounting, without signal contact
TB rail mounting, with signal contact and slot for busbars and jumpers
Version
1 standard, without physical isolation in the event of a failure Signal input
0 without signal input
1 with control input IN+, only ESX10-T-114
2 with reset input RE, only ESX10-T-124, ESX10-T-127
Signal outputs
0 without signal output

1	signal contact N/O
2	signal contact N/C

2 signal contact N/C
(only ESX10-T-114, ESX10-T-124)
7 inverse status output SF
(only ESX10-T-127
Operating voltage
DC 24 V rated voltage DC 24 V
Current rating
$\frac{0.5}{1 \mathrm{~A}}$
$\frac{2 \mathrm{~A}}{3 \mathrm{~A}}$
3 A
4 A
6 A
10 A
12 A

- A ordering example

Description of ESX10-T signal inputs and outputs (wiring diagrams) see next page.

Please note:

- The user should ensure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESX10-T used.
- Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the ESX10-T.

Schematic diagram ESX10-TB-124 (Example)

Terminal wiring diagram ESX10-TB-124 (Example)

Table 2: ESX10-T - product version

Version		Signal input			Signal output					
					Signal output F (Signal contact)			Status output SF		
ESX10-..		without	Control input ON/OFF +24 V Control IN+	Reset input $+24 \vee \downarrow$ RE	without	single signal N/O (normally open NO)	single signal N/C (normally closed NC)	withou t	Status OUT $+24 \mathrm{~V}=\mathrm{OK}$	Status $\overline{\text { OUT }}$ $0 \mathrm{~V}=\mathrm{OK}$
-TA	-100	x			x			x		
-TB	-101	x				x		x		
-TB	-102	X					X	x		
-TB	-114		x						x	
-TB	-124			X	x				X	
-TB	-127			x	x					x

Dimensions

Information on UL approvals

9 UL1604

File E320024
Operating Temperature Code T5
－This equipment is suitable for use in Class I，Division 2，
Groups A，B，C and D or non－hazardous locations only
WARNING：
－Exposure to some chemicals may degrade the sealing properties of materials used in the following device：relay
Sealant Material：
Generic Name：Modified diglycidyl ether of bisphenol A
Supplier：Fine Polymers Corporation
Type：Epi Fine 4616L－160PK
Casing Material：
Generic Name：Liquid Crystal Polymer
Supplier：Sumitomo Chemical
Type：E4008，E4009，or E6008
RECOMMENDATION：
－Periodically inspect the device named above for any degradation of properties and replace if degradation is found

WARNING－EXPLOSION HAZARD：
－Do not disconnect equipment unless power has been removed or the area is known to be non－hazardous
－Substitution of any components may impair suitability for Class I， Division 2

UL2367
Non－hazardous use－UL File E306740

UL 508 ／cUL 508
File E322549
Class 2
Meets requirement for Class 2 current limitation
（ESX10－T．．．－0．5 A／ 1 A／ 2 A／ 3 A）
CSA C22．2 No： 213 （Class I，Division 2）pending
CSA C22．2 No： 142 pending

Electronic Circuit Protector
T UL1604

This device is suitable for use in Class I，Div 2，Groups A，B，C，D；
TC T5；UL File E320024
Narnings：
．Remove power before disconnecting device
2．Components substitutions may impair suitability of Class I，Div 2.
．Chemical exposure may degrade internal relay＇s sealing property．

T

Non－hazardous use－UL File E306740
Refer to data sheet／installation guidelines for installation and safety instructions．
－T－A Elektrotechnische Apparate GmbH
ndustriestraße 2－8 $\cdot 90518$ ALTDORF
DEUTSCHLAND
el．＋49（09187）10－0 • Fax＋49（09187）10－397
－Mail：info＠e－t－a．de • www

ESX10-T Signal inputs / outputs (wiring diagram)

ESX10-TB-101
without signal input with signal output F (single signal, N/O)

operating condition: 13-14 closed fault condition: 13-14 open

ESX10-TB-124
with reset input RE
(+DC 24 V \downarrow)
with status output SF
(+24 V = load output ON)
operating condition: SF $+24 \mathrm{~V}=\mathrm{OK}$ fault condition: SF 0 V

ESX10-TB-102
without signal input
with signal output F
(single signal, N/C)

operating condition: 11-12 open fault condition: 11-12 closed

ESX10-TB-114
with control input $\mathrm{IN}+$
(+DC 24 V)
with status output SF
(+24 V = load output ON)

operating condition: $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$ fault condition: SF 0 V

Time／Current characteristic curve（ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）

${ }^{* 1}$ ）current limitation typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{~A} . .6 \mathrm{~A}$ current limitation typically $1.5 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A}$ or 10 A current limitation typically $1.3 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=12 \mathrm{~A}$
－The trip time is typically 3 s in the range between 1.1 and $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$ ）
－Electronic current limitation occurs at typically $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$ ）which means that under all overload conditions（independent of the power supply and the resistance of the load circuit）the max． overload before disconnection will not exceed $1.8 \times \mathrm{I}_{\mathrm{N}}{ }^{* 1}$ ）times the current rating．Trip time is between 100 ms and 3 sec （depending on overload or at short circuit）．
－Without this current limitation a considerably higher overload current would flow in the event of an overload or short circuit．

Table 3：Reliable trip of ESX10－T

Reliable trip of ESX10－T with different cable lengths and cross sections

The ESX10-T features an integral power distribution system.

$$
\begin{aligned}
& 5 \text { ESX10-TB } \\
& \text { with busbars } \\
& \text { and jumpers }
\end{aligned}
$$

5 ESX10-TA with busbars

Mounting procedure:

Before wiring insert busbars into protector block.

Connection diagrams and application examples ESX10－T

Connection diagrams and application examples ESX10－T．．．

Signal contacts are shown in OFF or fault condition．

ESX10－TA－100

ESX10－TB－101

group signalling（series connection）

Connection diagrams and application examples ESX10-T

ESX10-TB-102
Single signalling with common line entry

ESX10-TB-124

Single signalling with common reset

Electronic Circuit Protector ESX10-T
 Installation guidelines and safety instructions

Connection diagrams and application examples ESX10-T

Application examples: feed in module with

 concurrent protection of auxiliary circuitAuxiliary contacts are shown in the OFF of fault condition

ESX10-TB-101

Group signalisation (series connection)
Type ESX10-TA-100-DC24V-0.5A can be used as a feed in module including protection of auxiliary circuit

ESX10-TB-102

Single signalisation with common line entry
Type ESX10-TA-100-DC24V-0.5A can be used as a feed in module
including protection of auxiliary circuit

Description

The ESX10-T features an integral power distribution system. The following wiring modes are possible with various pluggable current and signal busbars:

- LINE +(DC 24 V$)$
- 0 V

Caution: The electronic devices ESX10-T require a 0 V connection

- signal contacts
- reset inputs

Busbars for LINE+ and 0 V
max. load with one line entry $\quad I_{\max } \quad 50 \mathrm{~A}$ (recommended: centre line entry) max. load with two line entries grey insulation, length: 500 mm X 22261102

Signal busbars for signal contacts and reset inputs max. load with one line entry $\quad I_{\max } 1 \mathrm{~A}$ with one series connection of signal contacts $I_{\max }^{\max } \quad 0.5 \mathrm{~A}$ grey insulation, length: 500 mm
X 22200503

Jumpers for signal contacts

grey insulation, length: 21 mm
X 22200513
packing unit: 10 pcs

Insulated wire bridge

optional as jumper for ESX10-TB-101
for group signalisation (series connection)
X 22298401
packing unit: 10 pcs

Busbars for LINE+ and 0 V

grey insulation
max. number of plug-on operations 10
X 222611 34, (3-unit-block ESX10-T), length: 34.5 mm
X 222 611 47, (4-unit-block ESX10-T), length: 47 mm
X 222611 59, (5-unit-block ESX10-T), length: 59.5 mm packing unit: 10 pcs

居E－TA゚ Solid State Remote Power Controller E－1048－60．

Description

The E－T－A Solid State Remote Power Controller（SSRPC）E－1048－60． is an opto decoupled transistorised switching device providing both protection and signalisation．
It may be used wherever safe switching and protection of resistive， inductive or lamp loads in DC voltage systems is required．

Typical applications

Automation
－interface module providing inexpensive power amplification at PLC outputs
－optimum protection of individual loads by monitoring the load circuit
Protection and control of
－motors
－solenoids
－lamps

Features

－Optimum load protection．Available in current ratings of $0.5 \mathrm{~A} ; 1 \mathrm{~A}$ ； 2 A； 4 A．No derating required over entire temperature range！
－Fast short－circuit limitation and disconnection
－Time／current dependent overload disconnection（simulating thermal－magnetic CBE trip curve）
－Remote control
－Fault indication：LED and signal output for overload／short－circuit signalisation，and wire break indication in the OFF condition （version－600）and in the OFF and ON condition（version－602）
－Physically isolated fault indication．
－Compact plug－in type

Ordering information

Type No．	
E－1048	Solid State Remote Power Controller
	Version
	600 wire break indication in OFF condition （standard）
	602 with permanent wire break monitoring
	Voltage rating
	DC 24 V DC 24 V （standard）
	Current ratings
	0.5 A
	1．0 A
	2.0 A
	4.0 A
E－1048	600 DC24 V 1．0 A ordering example

Where remote control，wire break and LED indication is not required，please contact us for a thermal－magnetic circuit breaker（e．g．types 2210，3600， 3900）．

Technical data（ Tambient $=25^{\circ} \mathrm{C}$ ；at U_{N} ）

Load circuit	
Voltage rating U_{S}	DC 24 V （18．．． 36 V ）
Current rating I_{N}	$0.5 \mathrm{~A} ; 1 \mathrm{~A} ; 2 \mathrm{~A} ; 4 \mathrm{~A}$（other ratings to special order）
Closed－circuit current $\mathrm{I}_{\text {Contr }}$	typically 0.3 mA
Min．load current	
Standard version：	$\mathrm{l}_{\text {load }}>1 \mathrm{~mA}$
wire break indication in OFF condition	
Option：wire break indication in OFF and ON condition	
wire break ind．in ON cond．	$\begin{aligned} & \mathrm{R}_{\text {load }} \text { > typ. } 500 \mathrm{k} \Omega \\ & \mathrm{I}_{\text {load }} \text { 就. } 130 \mathrm{~mA}(0.5 / 1 \mathrm{~A} \text { unit }) \\ & \mathrm{I}_{\text {load }} \text { < typ. } 500 \mathrm{~mA}(2 / 4 \mathrm{~A} \text { unit }) \end{aligned}$
Voltage drop U ${ }_{\text {DSmax }}$	$0.15 \mathrm{~V} ; 0.3 \mathrm{~V} ; 0.1 \mathrm{~V} ; 0.2 \mathrm{~V}$
Switch－on／switch－off time $\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}$	typ． $300 \mu \mathrm{~s} / 700 \mu \mathrm{~s}$ with resistive load
Overload disconnection 100 ms Short－circuit current （self－limiting）	approx． $1.5(\pm 0.3) \times \mathrm{I}_{\mathrm{N}}$ after approx．
	max． 25 A （with 0.5 A and 1 A current ratings）
	max． 75 A （with 2 A and 4 A current ratings）
Short－circuit disconnection	＜ 250 ¢
Control circuit	
Voltage rating	DC 24 V
Voltage controlled input U_{E}	DC 0 V ＜low level $<5 \mathrm{~V}$
	DC 8.5 V ＜high level $<36 \mathrm{~V}$
Input current I_{E}	1．．． 10 mA （8．5．．． 36 V ）
Max．switching frequency $f_{\text {max }}$	500 Hz
Reset time after short－	
Fault indication output F	
Voltage rating range	DC 5．．． 36 V
Voltage rating range	DC 5．．． 36 V
Max．load current	$100 \mathrm{~mA}(\Delta \mathrm{U}<2 \mathrm{~V}$ ），with reverse polarity protection
Error indication	output F＋／F－conductive
	－wire break in load circuit
	－after short－circuit／overload disconnection
Parallel connection possible，as leakage current $<10 \mu \mathrm{~A}$	
General data	
Temperature range	$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Insulation voltage	2.5 kV rms
（IEC 60664／VDE 0110）	
Mass	28 g

Technical description

At the appropriate input level ($>8.5 \mathrm{~V}$), the opto decoupled input in the SSRPC will switch on a power transistor to connect the load to the plus pole of the load circuit supply $\left(\mathrm{U}_{\mathrm{S}}\right)$.
The transistor will switch off when

- the control voltage $\left(U_{E}\right)$ is removed
- there is a short-circuit/overload in the load circuit.

Status indication is provided by two LEDs (red and green).
Thermal-magnetic style overload protection occurs at approx. 1.5 times rated current. See time/current characteristic curves.

The SSRPC is fitted with blade terminals DIN 46244-A6.3-0.8 and is suitable for plug-in mounting with various E-T-A sockets (see Accessories).

Control circuit

ON condition:
If a voltage higher than 8.5 V is applied to the input terminals (-IN, +IN), the control current (from the PLC) will flow through the opto coupler. The output transistor will be conductive, the green LED will be lighted.

OFF condition:

A control voltage lower than 5 V will switch the output transistor off.

Load circuit

The load circuit switches depending on the control signal ("0" or "1"). It is electronically monitored for faults. In the event of a short-circuit the circuit is disconnected after max. 250μ s whilst upon inadmissible overload it is disconnected according to the time/current curves shown.

Fault indication output

The fault indication circuit ($\mathrm{F}+$, F -) is opto decoupled from the load and control circuit.
In the OFF condition, this circuit will provide wire break indication, with the transistor output being open.
In the ON condition, the circuit will provide short-circuit and overload monitoring and indication.
Visual fault indication by red LED.
Status indication

Status indication	Fault indication output (opto coupler)	LED green red
non-conductive, no duty		$<$
conductive, normal duty		
overload or short circuit at the output (and with option wire break indication in ON condition)		
wire break, in the OFF position		

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Connection diagram

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

2 A and 4 A

FEFAB Solid State Remote Power Controller E 1048-60.

Functional diagrams E-1048-60.

Functional diagram E-1048-60.

wire break indication

Functional diagram E-1048-60.
overload /short-circuit indication

Accessories for E 1048-60.

Pin selection 17-P10-Si fitted with E-1048-60.

$\mathrm{E}-1048-60$.	17-P10-Si		
$\mathrm{IN}+$	(2)	(2)	$[2(\mathrm{k})]$
$\mathrm{IN}-$	(5)	(5)	$[12]$
$\mathrm{F}+$	(7)	(7)	$[24]$
$\mathrm{F}-$	(3)	(3)	$[2(\mathrm{i})]$
$-\mathrm{U}_{\mathrm{B}}$	(6)	(6)	$[23]$
Q	(4)	(4)	$[11]$
$+\mathrm{U}_{\mathrm{B}}$	(1)	(1)	$[1]$

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

后EFA゚ Solid State Remote Power Controller E-1048-7.

Description

The E-T-A Solid State Remote Power Controller E-1048-7.. is a transistorised switching device providing both protection and signalisation. It is suitable for all applications where the capabilities of the existing PLC outputs are not sufficient or where no protection against overload and short circuit or wire breakage monitoring of connected loads is provided. The use of a costly, high-capacity output card becomes superfluous when only one or two powerful outputs are necessary.

Using the SSRPC E-1048-7.. in combination with the module 17plus creates a new, very flexible system capable of being subsequently changed or extended. Busbars, pre-wired signal contacts and springloaded terminals reduce installation times considerably (see accessories).

Typical applications

Automation

- interface module providing inexpensive power amplification at PLC outputs
- optimum protection of individual loads by monitoring the load circuit
Protection and control of
- motors
- solenoids
- lamps

Features

- Optimum load protection. Available in current ratings of 0.5 A ; 1 A; $2 A ; 4 A ; 5 A$. No derating required over entire temperature range!
- Fast short-circuit limitation and disconnection
- Time/current dependent overload disconnection (simulating thermal-magnetic CBE trip curve)
- Remote control
- Fault indication: LED and signal output for overload/short-circuit signalisation, and wire break indication in the OFF condition (version -700 and -710) and in the OFF and ON condition (version -702 and -712)
- Fault storage: version -710; -712 and -713
- Physically isolated fault indication
- Compact plug-in type
- Plug-in design for use with power distribution system module 17plus
- Integral pre-wiring of common supply and signal contacts

Ordering information

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$; at U_{N})

Load circuit	
Voltage rating U_{S}	DC 24 V (18... 36 V)
Current rating I_{N}	0.5 A; 1 A; 2 A; 4 A; 5 A (other ratings to special order)
Closed-circuit current IContr	typically 0.3 mA
Min. load current	
Version -700/-710: wire break indication in OFF condition	
Optional: wire break indication wire break ind. in OFF cond wire break ind. in ON cond.	in OFF and ON condition $\mathrm{R}_{\text {load }}$ typically $500 \mathrm{k} \Omega$ $l_{\text {load }}<\operatorname{typ} .130 \mathrm{~mA}$ ($0.5 / 1 \mathrm{~A}$ unit) $l_{\text {load }}<\operatorname{typ} .500 \mathrm{~mA}(2 / 4 / 5 \mathrm{~A}$ unit)
Voltage drop U ${ }_{\text {DSmax }}$	$0.15 \mathrm{~V} ; 0.3 \mathrm{~V} ; 0.1 \mathrm{~V} ; 0.2 \mathrm{~V} ; 0.3 \mathrm{~V}$
Switch-on/switch-off time $\mathrm{ton}^{\text {/ }}$ toff	typ. $300 \mu \mathrm{~s} / 700 \mu \mathrm{~s}$ with resistive load
Overload disconnection	approx. $1.5(\pm 0.3) \times I_{N}$ after approx. 100 ms
Short-circuit current (self-limiting)	max. 25 A (with 0.5 A and 1 A current ratings) max. 75 A (with $2 \mathrm{~A} / 4 \mathrm{~A} / 5 \mathrm{~A}$ current ratings)
Short-circuit disconnection	< 250 ¢
Control input	
Control level	between IN+ and GND
Voltage rating	DC 24 V
Voltage controlled input U_{E}	DC 0 V < low level < 5 V DC 8.5 V < high level $<36 \mathrm{~V}$
Input current I_{E}	$1 . . .10 \mathrm{~mA}$ (8.5... 36 V)
Max. switching frequency $f_{\text {max }}$	1 kHz
Reset time after short-circuit/ overload disconnection	1 ms

Load circuit

Min. load current
0/-710:
wire break indication in OFF condition
wire break ind in OFF cond R typically 500 kS wire break ind. in OFF cond. R Road typically $500 \mathrm{k} \Omega$ load < typ. 130 mA (0.5/1 A unit) load < typ. 500 mA (2/4/5 A unit)
Voltage drop UDSmax $\quad 0.15 \mathrm{~V} ; 0.3 \mathrm{~V} ; 0.1 \mathrm{~V} ; 0.2 \mathrm{~V} ; 0.3 \mathrm{~V}$
Switch-on/switch-off time $\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }} \quad$ typ. $300 \mu \mathrm{~s} / 700 \mu \mathrm{~s}$ with resistive

Fault indication output F
relay contact

max. switching voltage	DC 150 V
	AC 125 V
max. interrupting capacity	DC 30 W
	AC 60 W
limiting continuous current	1 A
General data	
Temperature range	$0^{\circ} \mathrm{C} . .+60^{\circ} \mathrm{C}$
Insulation voltage	
(IEC 60664/VDE 0110)	DC $500 \mathrm{~V}>10 \mathrm{M} \Omega$
Mass	28 g

Technical description

At the correct input voltage (>8.5 V), the SSRPC will switch on a power transistor to connect the load to the plus pole of the load circuit supply (U_{S}).
The transistor will switch off when

- the control voltage $\left(\mathrm{U}_{\mathrm{E}}\right)$ is removed
- there is a short-circuit/overload in the load circuit.

Status indication is provided by two LEDs (red and yellow).
Simulated thermal-magnetic overload protection occurs at approx. 1.5 times rated current. See time/current characteristic curves.

The SSRPC is fitted with blade terminals DIN 46244-A6.3-0.8 and is suitable for plug-in mounting with various E-T-A sockets or module 17plus (see Accessories).

Control circuit

ON condition:

If a voltage higher than 8.5 V is applied to the input terminals $\left(+\mathrm{I}_{\mathrm{N}}\right.$ against GND), the control current (from the PLC) will flow through the opto coupler. The output transistor will be conductive, status indication by yellow LED.

OFF condition:

A control voltage lower than 5 V will switch the output transistor off.

Load circuit

The load circuit switches depending on the control signal ("0" or " 1 "). It is electronically monitored for faults. In the event of a short-circuit the circuit is disconnected after max. 250μ s whilst upon inadmissible overload it is disconnected according to the time/current curves shown.

Fault indication output F

The fault indication circuit is physically isolated from the load and control circuits via a relay.
In the OFF condition, this circuit (with closed contact) will provide wire break indication, with the transistor output being open.
The versions with fault storage $(-702 /-712$ and -713$)$ store the fault signal until the control voltage is re-applied.
Visual fault indication by red LED.

[^24]
Connection diagram

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

2 A and 4 A

Functional diagram E-1048-7..
wire break indication

Functional diagram E-1048-7..
overload/short-circuit indication

Connection diagram

Solid State Remote Power Controller E-1048-700 with Module 17plus

Wiring diagram

Common power supply for load, PLC I/O and signal loop

Accessories for E-1048-7..

Description

Module 17plus is a power distribution system for use with SSRPC E-1048-7.. for PLC outputs.
Each module accommodates two SSRPCs with an individual housing width of only 12.5 mm and fits onto all industry standard mounting rails. The two-way modules can be interconnected to provide as many ways as required with a terminal block fitted at each end for connection of signalling circuits. A distribution busbar can be fitted on the supply side of the modules (positive pole) though each pole of multipole circuit breakers must be individually connected. Electrical connections are by means of spring-loaded terminals. The reference potential for the electronic amplifiers (GND pin 11) is also looped through and to the terminals connected at the sides. Control of the amplifiers ($\mathrm{IN}+$), referenced to GND, is per channel via the separate terminal 12 beside the LOAD terminal. The SSRPC has an integral signal contact (break contact) used for group signalisation. Therefore the terminals of all break contacts are connected in series in the module 17plus and are connected to the terminal blocks via two terminals $(13,14)$. The module is designed to accommodate a probe for series connection continuity tests. When multipole circuit breakers are fitted auxiliary contacts are required for each pole. Individual circuit breaker signalisation is achieved through use of the break contacts (which close in the event of failure) connected in parallel by means of terminals on each module. The signalling circuitry between modules and the internal prewiring for the potential is automatically connected when the modules are linked together.
Meets the requirements of UL60950.

Ordering information

17PLUS-Q02-00	Module 17plus, centre piece, two-way
17PLUS-QA0-LR	one each left- and right-side terminal block for supply feed from the side by means of screw terminal, connection of signalisation

Technical data	
Connection Sp con and use for	Spring-loaded terminals for solid conductors and stranded cables with and without wire end ferrules. Please use appropriate screw driver size (SD) for removing the spring loaded terminals.
LINE feed (1): $\quad \begin{aligned} & \text { spr } \\ & \\ & \\ & \text { Sp } \\ & \text { SD }\end{aligned}$	spring-loaded terminals for $1.5-10 \mathrm{~mm}^{2}$, (AWG 20 - AWG 10) SD 2 (0.8×4.0)
LOAD output (2): $\begin{array}{ll}\text { spri } \\ & 0.2 \\ & \text { SD }\end{array}$	spring-loaded terminals for $0.25-4 \mathrm{~mm}^{2}$, (AWG 24 - AWG 12) SD 1 (0.6x3.5)
Reference potential GND and signalisation terminals (11, 13, 14): spring-loaded terminals for $0.25-2.5 \mathrm{~mm}^{2}$, (AWG 24-AWG 14) SD $1(0.6 \times 3.5)$	
control IN+ terminal (12)	spring-loaded terminal for $0.25-1.5 \mathrm{~mm}^{2}$, (AWG 24 - AWG 16) SD 0 (0.4×2.5)
Test probe for testing the group signal for line interruption: $\leq 2 \mathrm{~mm} \varnothing$	
Voltage rating (without SSRPC):	AC 433 V ; DC 65 V
Current rating (without SSRPC)	
LINE feed (1)	50 A
LOAD output (2)	25 A
Reference potential GND (11)	(11) 10 A
Control IN+ (12)	1 A
Group signal /(13-14)	1 A
Internal resistance values (without SSRPC)	
LINE-LOAD (1-2) Group signal (13-14)	$\begin{aligned} & \leq 5 \mathrm{~m} \Omega \\ & \leq 8 \mathrm{~m} \Omega / \text { per pole } \\ & +5 \mathrm{~m} \Omega \text { for each additional } \\ & \text { module } \end{aligned}$
Busbar for power distribution insulated busbar (blue or red): non-insulated busbar: (The non-insulated busbar, to standards when fitted.)	$\begin{array}{ll} I_{\max } & 32 \mathrm{~A} \\ \mathrm{I}_{\max } & 50 \mathrm{~A} \end{array}$ r, too, meets brush contact safety
Dielectric strength between main circuits (withou main circuit to auxiliary circuit: between auxiliary circuits:	thout busbar): $1,500 \mathrm{~V}$ $1,500 \mathrm{~V}$ $1,500 \mathrm{~V}$
Mass: Module 17plus (centre piece terminal blocks (pair)	piece) $\quad \begin{aligned} & \text { approx. } 85 \mathrm{~g} \\ & \text { approx. } 30 \mathrm{~g}\end{aligned}$

This is a metric design and millimeter dimensions take precedence（ $\frac{\mathrm{mm}}{\mathrm{inch}}$ ）

Connection diagram

Installation example

Installation：
1 Clip modules onto DIN rails．
Push modules together（side－by－side）．
Snap on right－side and left－side terminal blocks．
4 Cut busbar to required length and fit on supply side of the modules．
5 Connect line feed with spring－loaded terminals．
6 Plug in SSRPC E－1048－7．．．

Connection and disconnection of cables with screw driver

Pin selection，fitted with E－1048－7．．

E－1048－7．．	Module 17plus	
LINE＋（2）	（1）	\square
GND（5）	（11）	\square
F 7 （7）	（13）	च
F 6	（14）	$\underline{ }$
IN＋（4）	（12）	
LOAD（1）	（2）	\square

EEPAC E-1048-7.. - Accessories: Module 17plus

Accessories

Busbar 32 A

X 22200501 blue insulation, $500 \mathrm{~mm} / 19.68$ in
X 22200502 red insulation, $500 \mathrm{~mm} / 19.68$ in.
$\mathbf{X} 22200503$ grey insulation, $500 \mathrm{~mm} / 19.68$ in.

Busbar 50 A
Y 30701601 non-insulated, 500 mm/19.68 in.

Busbar 50 A
Y 30701611 non-insulated, 500 mm/19.68 in.

End bracket
X 22200401
Screw terminal for busbar X 21115601 non insulated

Jumper
X 22206601

Retaining clip for SSRPC E-1048-7.

recommended for fitting the devices
Y 30058111

Labels

marking area $6 \times 10 \mathrm{~mm}$
(packing unit 10 pcs $=1$ strip)
part. no. Y 30794261

Accessories for E-1048-7..

Single mounting sockets	(with adapter)
(up to 16 A max. load)	
17-P10-Si	17-P10-Si-20025
17-P70-Si	17-P70-Si-20025

(retaining clip Y 30058111 available on request)

Busbar (10-way) (supplied as a complete package)
for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for busbar (10-way)
Y 30382401

Pin selection 17-P10-Si, fitted with E-1048-7..

E-1048-7..	17-P10-Si	
LINE + (2)	(2) [2(k)]	5
GND (5)	(5) [12]	
F 7 (7)	(7) [24]	
	(3) [2(i)]	
F 6	(6) [23]	
$\mathrm{IN}+$ (4)	(4) [11]	
LOAD (1)	(1) [1]	

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^25] omissions excepted.

Description

The Smart Power Relay E-1048-8C.- is a remotely controllable electronic load disconnecting relay with three functions in a single unit:

- electronic relay
- electronic overcurrent protection
- status indication

The 7 pin CUBIC version is designed for use with standard automotive relay sockets. A choice of current ratings is available from 1 A through 25 A. An operating voltage range of DC 9... 32 V allows the connection of DC 12 V and DC 24 V loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together

- an electro-mechanic relay, control cable and integral contact
to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection
- a device for current measurement (shunt)

Now type E-1048-8C combines all these functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8C. is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected or monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock and vibration.
- Only a fraction of the control power needed by electro-mechanical relays is required for switching loads. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of an overload or short circuit, the trip curve is also suitable for smaller motor loads.
- The load circuit is permanently monitored for wire breakage.
- Two status outputs for control signal AS and group signal SF provide status indication. For processing the actual value of the current flow in a power management system an analogue output from 0 to 5 V is provided. This voltage signal may also be used as an input to a control circuit or to switch off the unit by means of external control in the event of low load current value.
- For switching and monitoring loads of 25 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, e. g. red $=10 \mathrm{~A}$, see ordering information.

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE +

Type
DC power supply with small R battery and generator etc.
DC 12 V / DC 24 V
DC 9... 32 V
Operating voltage U_{S} :

Load circuit LOAD

Load output Power MOSFET, high side switching

Max. current rating I_{N}
Types of loads

Current rating range I_{N}

Induced current consumption I_{0} of the unit (OFF condition) $<1 \mathrm{~mA}$
Typical voltage drop $U_{O N}$ at rated current $\mathrm{I}_{\mathrm{N}}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

I_{N}	$U_{O N}$	I_{N}	$U_{O N}$
1 A	50 mV	10 A	110 mV
2 A	55 mV	15 A	70 mV
3 A	60 mV	20 A	90 mV
5 A	80 mV	25 A	120 mV
7.5 A	90 mV		

Switching point

Trip time (standard curve)

Current limitation

Temperature disconnection
After trip
typically $1.3 \times \mathrm{l}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$
typically 200 ms with switch-on onto overload and/or load increase on duty version 1: typically 75 A
version 2: typically 350 A power transistor $>150^{\circ} \mathrm{C}$

- resettable via external control signal (low-high) at control input IN+ - reset of supply voltage

Parallel connection of channels for loads of 25 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
version 1: max. $100 \mu \mathrm{~A}$
version 2: max. $500 \mu \mathrm{~A}$ integral
version 1: max. 40 A
version 2: max. 100 A
typ. $5 \mathrm{~ms} /$ typ. 1.5 ms (EMC filter in control input)

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{U}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$
$\left.\begin{array}{ll}\hline \text { Wire breakage monitoring in } \\ \text { ON and OFF } \\ \text { condition of load } & \begin{array}{l}\text { wire breakage thresholds: } \\ \text { in OFF-condition (version 1): } \\ R_{\text {load }}>\text { typically } 100 \mathrm{k} \Omega\end{array} \\ \text { in OFF-condition (version 2): }\end{array}\right\}$

Status and diagnostic functions

Group signal SF

Analogue output U(I)

Trip times
definition of t_{90}
reached 90% of final value
transistor output minus switching (LSS), open collector, short circuit and overload proof, max. load: DC $32 \mathrm{~V} / 2 \mathrm{~A}$
0 V-level: when unit is set
(at $\mathrm{IN}+=8.4 \ldots 32 \mathrm{~V}$)
transistor output minus switching (LSS), open collector, short circuit and overload proof, load max. DC 32 V/2 A
0 V-level with overload and short circuit disconnection, wire breakage indication voltage output 0-5 V proportional to load current:
$1 \mathrm{~V}=0.2 \times \mathrm{I}_{\mathrm{N}}$
$5 \mathrm{~V}=1.0 \times \mathrm{I}_{\mathrm{N}}$
$5 \mathrm{~V} . .$. typically $6.5 \mathrm{~V}=$ overload range tolerance: (for load $>0.2 \times \mathrm{I}_{\mathrm{N}}$)
$\pm 8 \%$ of I_{N}
max. output current 5 mA
load resistance $>1 \mathrm{k} \Omega$ against GND
response time when switching on a load:
$\mathrm{t}_{90}=$ typically 20 ms
response time of load change on duty: t90 = typically 1 ms

Visual status indication
control signal AS LED yellow
group fault signal SF LED red

General data
Reverse polarity protection
Control circuit
Load circuit
Status outputs
yes
no (due to integral free-wheeling diode)
interference voltage resistance max. DC 32 V

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{TU}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Temperature range
 ambient temperature

	see ordering key
Tests	
Humid heat	combined test, 9 cycles with functional test test to DIN EN 60068-2-30, Z/AD
Temperature change	$\begin{aligned} & \text { min. temperature }-40^{\circ} \mathrm{C} \text {, } \\ & \text { max. temperature }+90^{\circ} \mathrm{C} \\ & \text { test to DIN IEC } 60068-2-14, \mathrm{Nb} \end{aligned}$
Vibration (random)	in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2,000 \mathrm{~Hz}$) test to DIN EN 60068-2-64
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion	test to DIN EN 60068-2-52, severity 3
Protection class	housing -8C4 IP30 to DIN 40050 housing -8C5 IP54 to DIN 40050, higher protection class upon request
EMC requirements	EMC directive: emitted interference EN 50081-1 noise immunity EN 61000-6-2 Automotive directive: emitted interference, noise immunity: 72/245/EWG und 2006/28/EG

Terminals of CUBIC version
(7 pin, standard)

Mounting:
5 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ and 2 blade terminals
$2.8 \mathrm{~mm} \times 0.6 \mathrm{~mm}$ to DIN 46244
Contact material CuZn37F44

- on automotive relay socket 7 pole or 9 pole

Housing CUBIC

max. dimensions

Materials

Mass
$30 \times 30 \times 40 \mathrm{~mm}$ when plugged in $30 \times 30 \times 51.6 \mathrm{~mm}$ including terminals CUBIC: housing PA66-GF30 base plate PA6-GF30 approx. 23 g... 43 g , depending on version

Approvals

CE, e1 logo
according to EU, EMC and automotive directives, approvals no. e1 033880

Ordering Information

Type
E-1048-8C Smart Power Relay DC $12 \mathrm{~V} / 24 \mathrm{~V}$ - 1 A... 20 A (25 A) in CUBIC housing
Housing / temperature range
4 with housing $-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$
5 with housing $-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$
increased environmental
requirements (IP protection class etc.)

4 short circuit / overload + wire breakage
off + wire breakage on
Analogue output
V0 without
V1 $0 . . .5 \mathrm{~V}$
Characteristic curve
4200 ms standard switch-off delay with overload)

U3 DC $12 / 24 \mathrm{~V}$
Current ratings /
colour of label
1 A / black
2 A / grey
3 A / purple
5 A / light-brown
7.5 A / brown
$10 \mathrm{~A} / \mathrm{red}$
15 A / blue
$20 \mathrm{~A} /$ yellows
25 A / white
E-1048-8C 5 -C 3 D 4 V1-4 U3-20A
ordering example 1: "DELUXE"-version 7 pin
E-1048-8C 4 - C 0 A $0 \quad$ V0-4 U3 - 5 A
ordering example 2: "BASIC"-version 4 pin

Dimensions CUBIC (7 pin version)

Dimensions BASIC (4 pin version)

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Version 1: 1 A, 2 A, 3 A, 5 A, 7.5 A and 10 A (standard 200 ms)

... times rated current I_{N}

Version 2: 15 A, 20 A and 25 A (standard 200 ms)

... times rated current I_{N}

Connection diagram

Pin selection (7 pin = "DELUXE")

Pin selection (4 pin = "BASIC")

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted

窃E-TAO Smart Power Relay E-1048-81. (INLINE)

Description

The Smart Power Relay E-1048-81.- is a remotely controllable electronic load disconnecting relay with three functions in a single unit:

- electronic relay
- electronic overcurrent protection
- status indication

The 7 pin INLINE version is designed for use with various E-T-A terminal blocks, e. g. 17-P10-Si. A choice of current ratings is available from 1 A through 20 A . An operating voltage range of DC 9... 32 V allows the connection of DC 12 V and DC 24 V loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together:

- an electro-mechanic relay, control cable and integral contact
to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection
- a device for current measurement (shunt)

Now type E-1048-8l. combines all these functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8I. is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected or monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock and vibration.
- Only a fraction of the control power needed by electro-mechanical relays is required for switching loads. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of an overload or short circuit, the trip curve is also suitable for smaller motor loads.
- The load circuit is permanently monitored for wire breakage.
- Two status outputs for control signal AS and group signal SF provide status indication. For processing the actual value of the current flow in a power management system an analogue output from 0 to 5 V is provided. This voltage signal may also be used as an input to a control circuit or to switch off the unit by means of external control in the event of low load current value.
- For switching and monitoring loads of 20 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, e. g. red $=10 \mathrm{~A}$, see ordering information.

E-1048-8I. INLINE

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE +

Type
DC power supply with small R battery and generator etc.
DC 12 V / DC 24 V
DC 9... 32 V
Operating voltage U_{S} :

Load circuit LOAD

Load output Power MOSFET, high side switching

Max. current rating I_{N}
Types of loads

Current rating range I_{N}

Induced current consumption I_{0} of the unit (OFF condition) $<1 \mathrm{~mA}$
Typical voltage drop $U_{O N}$ at rated current $\mathrm{I}_{\mathrm{N}}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

Switching point

Trip time (standard curve)
Current limitation
Temperature disconnection After trip

I_{N}	$U_{O N}$	I_{N}	$U_{O N}$
1 A	50 mV	7.5 A	90 mV
2 A	55 mV	10 A	110 mV
3 A	60 mV	15 A	60 mV
5 A	80 mV	20 A	60 mV

20 A
resistive, inductive, capacitive, lamp loads, motors (depending on duration of inrush current)
1 A... 15 A (fixed ratings) up to $85^{\circ} \mathrm{C}$ ambient without load reduction, 20 A up to $70^{\circ} \mathrm{C}$.
Two basic versions with factory preset ratings:
version 1: $1 \mathrm{~A} / 2 \mathrm{~A} / 3 \mathrm{~A} / 5 \mathrm{~A} / 7.5 \mathrm{~A} / 10 \mathrm{~A}$
version 2: 15 A / 20 A
typically $1.3 \times \mathrm{I}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$
typically 200 ms with switch-on onto overload and/or load increase on duty version 1: typically 75 A version 2: typically 350 A
power transistor $>150{ }^{\circ} \mathrm{C}$

- resettable via external control signa

Leakage current in OFF condition

Free-wheeling diode for connected load (low-high) at control input IN+ - reset of supply voltage

Parallel connection of channels for loads of 20 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
version 1: max. $100 \mu \mathrm{~A}$
version 2: max. $500 \mu \mathrm{~A}$
integral
version 1: max. 40 A
version 2: max. 100 A

Technical Data $\left(\Gamma_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Delay time $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$	typically $5 \mathrm{~ms} /$ typically 1.5 ms (resistive load)
(EMC filter in control input)	

Wire breakage monitoring in wire breakage thresholds:
ON and OFF
condition of load
Short circuit, overload
in load circuit
in OFF-condition (version 1):
$\mathrm{R}_{\text {load }}>$ typically $100 \mathrm{k} \Omega$
in OFF-condition (version 2):
$\mathrm{R}_{\text {load }}>$ typically $10 \mathrm{k} \Omega$
in ON-condition: load <typically $0.2 \times \mathrm{I}_{\mathrm{N}}$ indication via group fault signalisation FM (switching output)
Fault indication will not be stored, i.e. after remedy of wire breakage fault indication will disappear
(possible options:

- wire breakage indication only in ON condition
- wire breakage indication only in OFF condition
- no wire breakage indication)
in load circuit
disconnection of load, indication via group signal SF

Control input IN+

Control voltage IN_{+}
$0 . . .5 \mathrm{~V}=$ "OFF", 8.5... $32 \mathrm{~V}=$ "ON"
Control current I_{E}
$1 \ldots .10 \mathrm{~mA}(8.5 \ldots . . \mathrm{DC} 32 \mathrm{~V})$
Reset in the event of a failure - reset via external control signal (low

- high) at control input $\operatorname{IN}+$
- via reset of supply voltage

Dimmer operation possible, see max. switching frequency
(e.g. PWM signal)

- no automatic re-start
- after remedy of the fault unit has to be reset via control input $\operatorname{IN}+$

Switching frequency
at resistive or inductive load max. 100 Hz

Status and diagnostic function

Control signal AS transistor output minus switching (LSS), open collector, short circuit and overload proof, max. load: DC 32 V/2 A
0 V-level: when unit is set
(at $\mathrm{IN}+=8.4 . .32 \mathrm{~V}$)
Group signal SF

Analogue output U(I)

Trip times
definition of t_{90}
reached 90% of final value
(LSS), open collector, short circuit and overload proof, load max. DC $32 \mathrm{~V} / 2 \mathrm{~A}$
0 V -level with overload and short circuit disconnection, wire breakage indication voltage output $0-5 \mathrm{~V}$ proportional to load current:
$1 \mathrm{~V}=0.2 \times \mathrm{I}_{\mathrm{N}}$
$5 \mathrm{~V}=1.0 \times \mathrm{I}_{\mathrm{N}}$
5 V ... typically $6.5 \mathrm{~V}=$ overload range tolerance: (for $\mathrm{I}_{\text {load }}>0.2 \times \mathrm{I}_{\mathrm{N}}$)
$\pm 8 \%$ of I_{N}
max. output current 5 mA
load resistance $>1 \mathrm{k} \Omega$ against GND response time when switching on a load: $\mathrm{t}_{90}=$ typically 20 ms
response time of load change on duty: t90 = typically 1 ms

Visual status indication

Control signal AS
LED yellow
Group fault signal SF
LED red
Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperatureat $\left.\mathrm{U}_{\mathrm{N}}\right)$

General data

Reverse polarity protection

Control circuit
Load circuit
Status outputs
yes
no (due to integral free-wheeling diode)
interference voltage resistance
\max. DC 32 V

Temperature range

ambient temperature

- standard: $-40 \ldots+85^{\circ} \mathrm{C}$ without load reduction $\left(70^{\circ} \mathrm{C}\right.$ at 20 A$)$
- for other temperature ranges please see ordering key

Tests

Humid heat	combined test, 9 cycles with functional test
Temperature change	test to DIN EN 60068-2-30, Z/AD min. temperature $-40^{\circ} \mathrm{C}$, max. temperature $+90^{\circ} \mathrm{C}$
Vibration (random)	test to DIN IEC 60068-2-14, Nb in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2,000 \mathrm{~Hz}$) test to DIN EN 60068-2-64
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion	test to DIN EN 60068-2-52, severity 3
Protection class	housing IP30 to DIN 40050 higher protection class upon request
EMC requirements	EMC directive: emitted interference EN 50081-1 noise immunity EN 61000-6-2 Automotive directive: emitted interference, noise immunity: 72/245/FW6 und 95/54/E6

Terminals of INLINE version

(7 pin, standard) Mounting:	7 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ to DIN 46244-A6.3-0.8 contact material CuZn37F37 copper-plated and tin-plated - E-T-A socket type 17-P10-Si (max. load 16 A) - on a pc board with 6.3 mm receptacles
Housing max. dimensions	INLINE: $11.5 \times 50 \times 56 \mathrm{~mm}$ when plugged in $11.5 \times 50 \times 66 \mathrm{~mm}$ including terminals
Materials Mass	INLINE: Ultramid approx. 23 g ... 33 g , depending on version
Approvals CE, e1 logo	according to EU, EMC and automotive directives

Ordering Information

Type

E-1048-8I Smart Power Relay DC 12 V/24 V - 1 A... 20 A in INLINE housing
Housing / temperature range
$3 \quad$ with housing $/ 70^{\circ} \mathrm{C}$ (without moisture condensation)
4 with housing / $-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=20 \mathrm{~A}\right)$
C with control input (+ control 8.5... 32 V) LEDs
0 without LEDs
32 LEDs: AS yellow, SF red
Status output minus-switching
A without
D with AS and SF
Contents of group fault signal SF/

	LED indication SF
	without
1	short circuit / overload
3	short circuit / overload + wire breakage on
4	short circuit / overload + wire breakage

short circuit / overload + wire breakage
off + wire breakage on
Analogue output
V0 without
V1 $0 . . .5 \mathrm{~V}$
Characteristic curve
4200 ms (switch-off delay with overload)
Voltage rating
U3 DC 12/24 V
Current ratings /
colour of label
1 A / black 2 A / grey
3 A / purple
5 A / light-brown
7.5 A / brown
$10 \mathrm{~A} / \mathrm{red}$
15 A / blue
$20 \mathrm{~A} /$ yellow

Available configurations:

part number (without options = "BASIC")
E-1048-8I 3 - C 0 A 0 V0-4 U3-... A
part number (various options)

part number (all options $=$ "DELUXE")
E-1048-81 4 - C 3 D 4 V1-4 U3-... A

Dimensions (all options = "DELUXE")

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Connection diagram (all options = "DELUXE")

Pin selection

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Version 1: 1 A, 2 A, 3 A, 5 A, 7.5 A and 10 A (standard 200 ms)

Version 2: 15 A and 20 A (standard 200 ms)

... times rated current I_{N}

Accessories for E-1048-8I.

Busbar (10-way) (supplied as a complete package) for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for busbar (10-way)
Y 30382401

2-way mounting socket

23-P10-Si
(retaining clip Y 30058103 available

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$, (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), blue (up to 20 A max. load)

2 mounting clips
Y 30050402
(2 pcs needed per unit)

Installation drawing with mounting clips Y 30050402

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

E E-PAO Smart Power Relay E-1048-8D. (DICE)

Description

The Smart Power Relay E-1048-8D. is a remotely controllable electronic load disconnecting relay with two functions in a single unit:

- electronic relay
- electronic overcurrent protection

The 4 pin DICE version is designed for use with standard automotive relay sockets. A choice of current ratings is available from 1 A through 25 A . An operating voltage range of DC $9 \ldots . .32 \mathrm{~V}$ allows the connection of DC 12 V and DC 24 V loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together:

- an electro-mechanic relay, control cable and integral contact to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection

Now type E-1048-8D. combines these two functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8D. is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected or monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock and vibration.
- Only a fraction of the control power needed by electro-mechanical relays is required for switching loads. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of a short circuit (ENTRY version) or overload/short circuit (ENTRYprotect version).
- For switching and monitoring loads of 25 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, e. g. red $=10 \mathrm{~A}$, see ordering information.

Technical Data ($\mathrm{T}_{\text {amb. }}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{N}}=\mathrm{DC} 24 \mathrm{~V}$)

Power supply LINE +

Type
Voltage ratings U_{N} Operating voltage U_{S}

Load circuit LOAD

Load output Power MOSFET, high side switching

Max. current rating I_{N}
Types of loads

Current rating range I_{N}

ENTRY version
ENTRYprotect version
Load output with short circuit and overload protection (typically 200 ms at $\mathrm{I}_{\text {Load }}>$ typically $1.3 \times \mathrm{I}_{\mathrm{N}}$)
$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} . . .10 \mathrm{~A}$: see trip curve 1
$I_{N}=15 A . . .25 A$: see trip curve 2
Induced current consumption
I_{0} of the unit (OFF condition) $<1 \mathrm{~mA}$
Typical voltage drop U_{ON} at rated current $I_{N}\left(\right.$ at $25^{\circ} \mathrm{C}$)

I_{N}	$U_{O N}$	I_{N}	$U_{O N}$
1 A	50 mV	10 A	110 mV
2 A	55 mV	15 A	70 mV
3 A	60 mV	20 A	90 mV
5 A	80 mV	25 A	120 mV
7.5 A	90 mV		

Switching point (only ENTRYprotect) Trip time (standard curve) (only ENTRYprotect)
Current limitation

Temperature disconnection After trip
typically $1.3 \times \mathrm{I}_{\mathrm{N}}$
$\left(-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}: 1.1 \ldots 1.5 \times \mathrm{I}_{\mathrm{N}}\right)$ typically 200 ms with switch-on onto overload and/or load increase on duty $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A} . .10 \mathrm{~A}$: typically 75 A
$I_{N}=15$ A... 25 A: typically 350 A power transistor $>150^{\circ} \mathrm{C}$

- resettable via external control signal (low-high) at control input IN+ - reset of supply voltage

Parallel connection of channels for loads of 25 A plus, several units of identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
Leakage current in OFF condition

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Ordering Information

Type

E-1048-8D Smart Power Relay DC 12 V/24 V, 1 A... 25 A
in DICE housing
Housing / temperature range
$4 \quad$ with housing $-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$
5 with housing $-40^{\circ} \mathrm{C} . .85^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ at $\left.\mathrm{I}_{\mathrm{N}}=25 \mathrm{~A}\right)$ increased environmental requirements (IP protection class etc.)
Control input
C0 with control input (+ control 8.5... 32 V)
Options
AO without options
Characteristic curve
0 ENTRY, short circuit protected
4 ENTRYprotect, 200 ms standard switch-off delay with overload, short circuit protected
Voltage rating
U3 DC $12 / 24 \mathrm{~V}$
Current ratings / colour of label
1 A / black
2 A/grey
3 A / purple
5 A / light-brown
7.5 A / brown
$10 \mathrm{~A} / \mathrm{red}$
15 A / blue
$20 \mathrm{~A} /$ yellow
25 A / white

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{E}-1048-8 \mathrm{D}$ | $4-\mathrm{CO}$ | AO - 0 | $\mathrm{U} 3-10$ |

ordering example
ENTRY version 4 pin

Dimensions DICE (4 pin version)

[^26]
EE-A゚ Smart Power Relay E-1048-8D. (DICE)

Typical time/current characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Trip curve 1 "ENTRYprotect"

$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7,5 \mathrm{~A}$ and 10 A (standard 200 ms)

... times rated current I_{N}
Trip curve 2 "ENTRYprotect"
15 A, 20 A and 25 A (standard 200 ms)

Connection diagram

Pin selection DICE (4 pin)

룰텅 Solid State Remote Power Controller E-1071-073

Description

The E-T-A Remote Power Controller E-1071-073 is an electronic ON/OFF control module with protective functions and is suitable for resistive and inductive loads such as solenoids in rolling mills and other large plant applications. It is specifically used in plant modernization where the load circuit supply should be maintained at DC 24 V .

Typical applications

Control of hydraulic and pneumatic systems in production lines and chemical plants.

Features

- Solid-state relay with protective functions
- Solid-state switching avoids contact arcing and welding
- Inrush current limitation
- Overload and short-circuit proof output
- Low control power
- Control current indication by LED
- Auxiliary contact

Ordering information

Technical data (Tambient $=25^{\circ} \mathrm{C}$, Us = DC 24 V)

Voltage rating U_{N}	DC 24 V
Operating voltage U_{S}	DC 20... 48 V
Current rating I_{N}	3 A
Current consumption $\left(\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}, \mathrm{U}_{\mathrm{Contr}}=\right.\text { "0") }$	typically 17 mA
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection	U_{S} (terminals 1 and 2)
Physical isolation	2-pole - by circuit breaker hand release - approx. 5 s after overload disconnection
Load circuit	
Load output	NPN transistor, minus switching
Load rating	DC $24 \mathrm{~V} / 0.2 . .3 \mathrm{~A}$
Voltage drop at I_{N}	max. 1.75 V
Overload disconnection	approx. $1.1 \times \mathrm{I}_{\mathrm{N}}$
Storage time ts (at $2 \mathrm{xl}_{\mathrm{N}}$)	typically 20 ms (see storage time curve)
Short-circuit limitation	approx. $2.5 \mathrm{x} \mathrm{I}_{\mathrm{N}}$
Short-circuit response delay	approx. $4 \mu \mathrm{~s}$
Load current monitoring	GREEN LED (lights at $\left.\mathrm{l}_{\text {load }}>0.2 \mathrm{~A}\right)$
Current measuring terminals	$2 \times 2 \mathrm{~mm}$ dia. (0.1Ω shunt $\pm 1 \%$)
Leakage current ($\mathrm{U}_{\text {contr }}=$ "0")	max. 3 mA
Free-wheeling diode	integral
Control circuit	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\text {Contr }}$	"0" = 0... 5 V
	$" 1 "=8.5 \ldots 35 \mathrm{~V}$
Control current $\mathrm{I}_{\text {Contr }}$	typically 5 mA
Switching frequency $f_{\text {max }}$	100 Hz
Control signal ($\mathrm{U}_{\text {contr }}=$ "1")	YELLOW LED lights (IS flowing)
Protection	reverse polarity protection (diode)
Signal output	
Fault indication	auxiliary contact (N / O)
	- max. DC $30 \mathrm{~V} / 3 \mathrm{~A}$
	- physically isolated
	- closed with the circuit breaker tripped
General data	
Ambient temperature	$0 . . .+60^{\circ} \mathrm{C}$ (without condensation)
Terminals	screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
Housing	clamping plate: polycarbonate GV, blue cover: polycarbonate, black
Mounting	symmetric rail to EN 50022-35
Self-extinguishing properties	to UL 94: V = 0; VDE 0304: grade 1
Degree of protection(IEC 529/DIN 40050)	
Mounting dimensions	$45 \times 74 \times 128 \mathrm{~mm}$
Mass	approx. 240 g

Solid State Remote Power Controller E-1071-073

In principle, the E-T-A SSRPC E-1071-073 operates like conventional electro-mechanical relays, with additional protective and signal functions. The control input replaces the magnetic coil and the power transistor replaces the main contact.

Control circuit

The control current flows through the LED and the opto coupler immediately a voltage higher than 8.5 V (= control signal " 1 ") is applied at the input terminals (6 and 7). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

Load circuit

The load circuit is switched ON or OFF according to the control signal (" 0 " or " 1 "), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

Status indication

Status indication is provided by 2 LEDs (yellow and green) on the front of the housing.

YELLOW LED = correct control voltage The LED indicates when the control voltage is higher than 8.5 V , with control current flowing.
GREEN LED = correct load current
The green LED indicates when the load current is higher than 0.2 A.

Faults such as too high a load resistance, wire break, poor contact, or overload/short-circuit, are available when only the yellow LED indicates. SSRPC E-1071-073 includes two current measuring terminals (2 mm dia.) on the front. These terminals provide for load current measurement in terms of voltage drop at the 0.1Ω shunt in the load circuit.

Storage time characteristic curve $\mathrm{t}_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Operating modes

Operating status	Fault-free operation		Short-circuit on the load	Wire break	
Control input UContr	$" 0 "$	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$
YELLOW LED - control current	0	1	1	0	1
GREEN LED - load current monitoring	0	1	0	0	0
Auxiliary contact	open	open	closed	open	open
Remarks	load OFF	load ON	circuit breaker tripped		

1 - LED indicates
0 - LED does not indicate

ZETFAOSolid State Remote Power Controller E-1071-073

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Basic circuit diagram

Terminal selection

Terminal
1 operating voltage $+U_{S}$: DC $20 \ldots 48 \mathrm{~V}$
operating voltage $-U_{S}$
load (+)
load (-)
not used
control voltage $+\mathrm{U}_{\text {Contr }}$: max. DC 35 V
control voltage $-\mathrm{U}_{\text {Contr }}$
auxiliary contact
auxiliary contact
not used

Description

The E-T-A Solid State Remote Power Controller E-1071-128 is an electronic ON/OFF control module with protective and signalling functions. It is suitable for inductive loads (solenoids, magnetic brakes) when the load circuit supply cannot be increased to the voltage level required (e. g. DC 36 V). The operating status of the controller/load connected is continuously indicated and signalled via opto coupler.

Typical applications

Control of hydraulic and pneumatic systems in production lines and chemical plants where check-back signals for process control systems are needed.

Features

- Overcurrent and short-circuit proof switching output with electronic current limitation
- Switch-off current largely independent of operating voltage
- Inrush current limitation
- Physical isolation between control and load circuit via opto coupler
- Low control power; control current indication by LED
- Solid state switching avoids contact arcing and welding
- 2-pole physical isolation upon overload or when tripped manually
- Opto decoupled ON and fault indication by LED
- Setting of minimum current on front of housing, with minimum current indication (set at approx. 50% of the load current rating)
- Current measuring terminals on front of housing
- Reverse polarity protection in control and load circuit

Ordering information

Technical data (Tambient $=25^{\circ} \mathrm{C}$, Us = DC 24 V)

Voltage rating U_{N}	DC 24 V
Operating voltage U_{S}	DC 20... 48 V
Current rating I_{N}	3 A
Current consumption $\left(\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}, \mathrm{U}_{\mathrm{Contr}}=" 0 "\right)$	typically 15 mA
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection	$U_{\text {S }}$ (terminals 1 and 2)
Physical isolation	2-pole - by manual release (circuit breaker) - approx. 5 s after overload disconnection
Load circuit	
Load output	NPN transistor, minus switching
Load rating	DC $24 \mathrm{~V} / 0.2 \ldots 3 \mathrm{~A}$
Voltage drop at l_{N}	max. 2 V
Overload disconnection	approx. $1.1 \times \mathrm{l}_{\mathrm{N}}$
Storage time ts (at $2 \times 1 \times$)	typically 20 ms (see storage time curve)
Short-circuit limitation	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short-circuit response delay	approx. $4 \mu \mathrm{~s}$
Load current monitoring $\mathrm{I}_{\text {min }}$	GREEN LED lights at $\mathrm{I}_{\text {load }}>0.2 \mathrm{I}_{\text {mi }}$
(MIN monitoring, to be set by potentiometer at 50% of the load current rating)	switch position I: 0.1...1.1 A switch position II: 1.1...2.1 A
Current measuring terminals	$2 \times 2 \mathrm{~mm}$ dia. (shunt $0.1 \Omega \pm 1 \%$)
Leakage current ($\mathrm{U}_{\text {contr }}=$ " 0 ")	max. 3 mA
Free-wheeling diode	integral
Control circuit	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\text {Contr }}$	" 0 " = 0... 5 V
	"1" = 8.5... 35 V
Control current $\mathrm{I}_{\text {Contr }}$	typically 5 mA
Switching frequency $f_{\text {max }}$	10 Hz
Control signal ($\mathrm{U}_{\text {Contr }}=$ "1")	YELLOW LED lights (lcontr flowing)
Protection	reverse polarity protection (diode)
Status outputs	
2 signal outputs	ON indication/fault indication - physically isolated by opto coupler - transistor outputs plus switching - max. DC 33 V/100 mA per output - integral free-wheeling diode - 20 ms time delay (eliminating false signals before the minimum current is reached)
ON indication (terminal 8)	$U_{\text {Contr }}=$ " 0 ": output non-conductive $U_{\text {Contr }}=" 1 "$: output connecting plus potential (terminal 10) to terminal 8
Fault indication (terminal 9)	fault: output non-conductive no fault: output connecting plus potential (terminal 10) to terminal 9

Technical data (Tambient $=25^{\circ} \mathrm{C}$, Us $=24 \mathrm{~V}$ DC)

General data

Ambient temperature
Terminals

Housing
Mounting
Burning behaviour (housing)
Degree of protection
Mounting dimensions
Mass
$0 . .+60{ }^{\circ} \mathrm{C}$ (without condensation) screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
clamping plate: polycarbonate GV, blue cover: polycarbonate, black
symmetric rail to EN 50022-35
to UL 94: V = 0; VDE 0304: grade 1
IP20 housing, terminals
(IEC 529/DIN 40050)
$45 \times 74 \times 128 \mathrm{~mm}$
approx. 320 g

Technical description

In principle, the E-T-A SSRPC E-1071-128 operates like conventional electro-mechanical relays, with additional protective and signalling functions. The control input replaces the magnetic coil and the power transistor replaces the main contact.
ON and fault indication outputs have more complex functions and may not be compared with auxiliary contacts.

Control circuit

The control current flows through the LED and the opto coupler immediately a voltage higher than 8.5 V (= control signal "1")is applied at the input terminals (6 and 7). The opto coupler transmits the signa to the load circuit, at the same time switching the load transistor on This signal is transmitted as a status signal to all monitoring circuits The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

Load circuit

The load circuit is switched ON or OFF according to the control signal ("0" or "1"), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

Signal circuit

The signal circuit includes two opto couplers signalizing either correct ON duty or a fault. These signals may be computer processed.

- The ON signal output indicates correct operating in the ON condition. This output is conductive
when control voltage is available
AND the load current is higher than the set minimum curren
AND the circuit breaker has not tripped
AND there is no wire break
- The fault signal output signalizes the fault source which must be eliminated. This output is non-conductive when
the circuit breaker has tripped on overload or short-circuit
OR there is a wire break
OR control voltage is available AND the minimum current has not been reached
OR no control voltage is applied although the load current is available.

The fault signal output operates on the closed-circuit principle, i.e. it carries plus potential during fault-free operation.

Storage time characteristic curve $\mathrm{t}_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Operating modes

Operating status	Fault-free operation		Short-circuit on the load		Wire break		Load current < minimum current	
Control input US	$" 0 "$	$" 1 "$	$" 0 "$	$" 1 "$	$" 0 "$	$" 1 "$	$" 0 "$	$" 1 "$
YELLOW LED - control current	0	1	0	1	0	1	0	1
GREEN LED - min. current indication	0	1	0	0	0	0	0	0
GREEN LED -	0	1	0	0	0	0	0	0
ON indication	1	1	1	0	0	0	1	0
RED LED - fault indication	load Remarks	load ON	phys. isolation after approx. 5 s	no load connected, wire break				

1 - LED indicates
0 - LED does not indicate

Status outputs

ON Terminal 8	Fault Terminal 9	Remark
0	0	wire break or load current < minimum current (switched on) or short-circuit (switched on)
0	1	fault-free operation (switched off)
1	1	fault-free operation (switched on)

1 - status output carries plus potential
0 - status output carries minus potential

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Basic circuit diagram

Terminal selection

Terminal

1 operating voltage $+U_{s}$: DC $20 \ldots 48 \mathrm{~V}$ operating voltage $-U_{S}$
load (+)
load (-)
auxiliary voltage $-\mathrm{U}_{\mathrm{A}}$ for status outputs control voltage $+U_{\text {Contr: }}$ max. DC 35 V control voltage $-U_{\text {Contr }}$
ON status output (max. 100 mA)
fault status output (max. 100 mA)
auxiliary voltage $+\mathrm{U}_{\mathrm{A}}$ for status outputs: max. DC 33 V

Description

The E-T-A Solid State Remote Power Controller E-1071-343 is a double relay with protective function both for resistive and inductive DC 48 V loads. It is particularly suitable to control upward/downward and forward/backward movements. Failure of one channel will also cause the other channel to disconnect.

Typical applications

- Valve timing gears for forward/backward or upward/downward movements (overlapping operation is possible)
- Parallel circuits which must be completely disconnected after failure of one of the circuits.

Features

- Small double relay with protective function
- Overcurrent and short-circuit proof outputs
- Two pole physical isolation of both channels - approx. 5 s after electronic fault disconnection
- by manual release
- Both part units are disconnected upon isolator tripping
- Current load of each unit: max. 3 A ; total current max. 4 A
- Electrical isolation between control and load circuit by means of opto coupler
- Control current indication by RED LED
- Load current indication by GREEN LED
- With auxiliary contact (fault indication)
- Temperature disconnection

Ordering information

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 48 \mathrm{~V}$)

Voltage rating U_{N}	DC 48 V
Operating voltage U_{S}	DC 36... 60 V
Current rating I_{N}	$3 \mathrm{~A} 3 \mathrm{~A}(2 \mathrm{~A}+2 \mathrm{~A})$
Current consumption $\left(\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 48 \mathrm{~V}, \mathrm{U}_{\mathrm{Contr}}=" 0 "\right)$	typically 21 mA
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection	$\mathrm{US}_{\text {S }}$ (terminals 1 and 2)
Physical isolation	2-pole - by manual circuit breaker release - approx. 5 s after overload disconnection - upon thermal response (approx. $+130^{\circ} \mathrm{C}$)
Load circuits (I/II)	
Load output	NPN transistor, minus switching
Load rating	DC $48 \mathrm{~V} / 0.2$... 3 A per channel with parallel duty of both channels: max. 4 A (e.g. 2 A + 2 A)
Voltage drop at I_{N}	max. 1.8 V
Overload disconnection	approx. $1.1 \times \mathrm{l}_{\mathrm{N}}$
Storage time $\mathrm{t}_{\mathrm{S}}\left(\right.$ at $2 \mathrm{ll}_{\mathrm{N}}$)	typically 20 ms (see storage time curve)
Short-circuit limitation	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short-circuit response delay	approx. $4 \mu \mathrm{~s}$
Load current monitoring	GREEN LED lights at $\mathrm{l}_{\text {load }}>0.1 \mathrm{~A}$
Current measuring terminals	$3 \times 4 \mathrm{~mm}$ dia. (shunt $0.1 \Omega \pm 1 \%$)
Leakage current ($\mathrm{U}_{\text {Contr }}=$ "0")	max. 3 mA
Free-wheeling diode	integral
Control circuits (I/II)	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\text {Contr }}$	$\begin{aligned} & " 0 "=0 \ldots 5 \mathrm{~V} \\ & " 1 "=8.5 \ldots .35 \mathrm{~V} \end{aligned}$
Control current	typically 5 mA
Switching frequency $\mathrm{f}_{\text {max }}$	100 Hz
Control signal ($\mathrm{U}_{\text {Contr }}=$ "1")	RED LED lights ($\mathrm{I}_{\text {S }}$ flowing)
Protection	reverse polarity protection (diode)
Signal output	
Fault indication	auxiliary contact (N/O)
	- max. DC $30 \mathrm{~V} / 3 \mathrm{~A}$
	- physically isolated
	- closed when the circuit breaker has tripped
General data	
Ambient temperature	$0 . . .+60^{\circ} \mathrm{C}$ (without condensation)
Terminals	screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
Housing	clamping plate: polycarbonate GV, blue cover: polycarbonate, black
Mounting	symmetric rail to EN 50022-35
Self-extinguishing properties	to UL 94: V = 0; VDE 0304: grade 1
(IEC 529/DIN 40050)	
Mounting dimensions	$45 \times 74 \times 128 \mathrm{~mm}$
Mass	approx. 320 g

Technical description

Under normal operating conditions, the E-T-A SSRPC E-1071-343 allows the connection and disconnection of the load outputs of two channels independent of each other.

Control circuits (I/II)

The control current flows through the LED and the opto coupler immediately a voltage higher than $8.5 \mathrm{~V}(\hat{=}$ control signal " 1 ") is applied at the input terminals (6 and 7 , or 10 and 7). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

Load circuits (I/II)

The load circuit is switched ON or OFF according to the control signal ("0" or "1"), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

After expiration of the storage time (see diagram) the load circuit transistor will become non-conductive. After approx. 5 s the isolator will switch off so as to disconnect the two load circuits. The common auxiliary contact closes signalling the fault. After removal of the fault, the SSRPC can be reactivated by pushing the isolator button.

Status outputs

Status indication is provided by 4 LEDs ($2 \times$ RED, $2 \times$ GREEN $)$.
RED LED
ON indication (I/II)
The red LED indicates when the control voltage is higher than 8.5 V , with control current flowing.

GREEN LED

Current flow indication (I/II)
The green LED indicates when the load current is above 0.1 A .
Faults such as too high a resistance, wire break, poor contact, or overload/short-circuit, are available when only the red LED indicates.

The SSRPC E-1071-343 includes three current measuring terminals (4 mm dia.) on the front. These terminals provide for load current measurement in terms of voltage drop at the 0.1Ω shunt in the load circuit (I/II).

Storage time characteristic curve $\mathrm{t}_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Operating modes

Operating status	Fault-free operation		Short-circuit on the load		Wire break	
Control input	"0"	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$	
RED LED - Control current	0	1	1	0	1	
GREEN LED - Load current monitoring	0	1	0	0	0	
Auxiliary contact	open	open	closed	open	open	
Remarks	load OFF	load ON	both load circuits disconnected			

1 - LED indicates
0 - LED does not indicate

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Basic circuit diagram

Terminal selection

Terminal

perating voltage +US: DC 36... 60 V operating voltage $-U_{S}$
load (+) (carrying plus potential) CAUTION: Do not connect to GND/-US
load I (-)
load II (-)
control voltage I +U $\mathrm{U}_{\text {Contr: }}$ max. DC 35 V
control voltage I, II $-\mathrm{U}_{\text {Contr }}$
auxiliary contact
auxiliary contact
auxiliary voltage II +U Contr: max. DC 35 V

All dimensions without tolerances are for reference only. In the interest of improved design,

Description

The E-T-A Solid State Remote Power Controller E-1071-353 is a double relay with protective function both for resistive and inductive DC 24 V loads. It is particularly suitable to control upward/downward and forward/backward movements. Failure of one channel will also cause the other channel to disconnect.

Typical applications

- Valve timing gears for forward/backward or upward/downward movements (overlapping operation is possible)
- Parallel circuits which must be completely disconnected upon failure of one of the circuits

Features

- Small double relay with protective function
- Overcurrent and short-circuit proof outputs
- Two pole physical isolation of both channels
- approx. 5 s after electronic disconnection of a fault
- by manual release
- Both part units are disconnected upon the isolator tripping
- Current load of each unit: max. 3 A ; total current max. 4 A
- Electrical isolation between control and load circuit by means of opto coupler
- Control current indication by RED LED
- Load current indication by GREEN LED
- With auxiliary contact (fault indication)
- Temperature disconnection

Ordering information

Type No		
E-1071	SSR	
	353	double unit
		Voltage rating of load
		DC 24 V
		Current rating
		$3 \mathrm{~A} / 3 \mathrm{~A}$
E-1071 -	353	DC 24 V - 3 A / 3 A ordering example

E-1071-353

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Voltage rating U_{N}	DC 24 V
Operating voltage $\mathrm{US}^{\text {S }}$	DC 20... 48 V
Current rating I_{N}	$3 \mathrm{~A} 3 \mathrm{~A}(2 \mathrm{~A}+2 \mathrm{~A})$
Current consumption	typically 30 mA
($\mathrm{U}_{\text {S }}=\mathrm{DC} 24 \mathrm{~V}, \mathrm{U}_{\text {contr }}=$ "0")	
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection	$\mathrm{US}_{\text {S }}$ (terminals 1 and 2)
Physical isolation	2-pole - by manual circuit breaker release - approx. 5 s after overload disconnection - upon thermal response (approx. $+130^{\circ} \mathrm{C}$)
Load circuits (I/II)	
Load output	NPN transistor, minus switching
Load rating	DC 24 V/0.2... 3 A per channel with parallel duty of both channels: max. 4 A (e. g. $2 \mathrm{~A}+2 \mathrm{~A}$)
Voltage drop at l_{N}	max. 1.8 V
Overload disconnection	approx. $1.1 \times \mathrm{IN}$
Storage time ts (at $2 \times 1 \mathrm{~N}$)	typically 20 ms (see storage time curve)
Short-circuit limitation	approx. $2.5 \times \mathrm{I}_{\mathrm{N}}$
Short-circuit response delay	approx. $4 \mu \mathrm{~s}$
Load current monitoring	GREEN LED lights at load $>0.1 \mathrm{~A}$
Current measuring terminals	$3 \times 4 \mathrm{~mm}$ dia. (shunt $0.1 \Omega \pm 1 \%$)
Leakage current ($\mathrm{U}_{\text {contr }}=$ " 0 ")) max. 3 mA
Free-wheeling diode	integral
Control circuits (I/II)	
Control	opto coupler in control input
Control voltage $\mathrm{U}_{\text {Contr }}$	$\begin{aligned} & " 0 "=0 \ldots 5 \mathrm{~V} \\ & " 1 "=8.5 \ldots . .35 \mathrm{~V} \end{aligned}$
Control current $\mathrm{I}_{\text {contr }}$	typically 5 mA
Switching frequency $\mathrm{f}_{\text {max }}$	100 Hz
Control signal ($\mathrm{U}_{\text {contr }}=$ "1")	RED LED lights (lcontr flowing)
Protection	reverse polarity protection (diode)
Signal output	
Fault indication	auxiliary contact (N/O) - max DC $30 \mathrm{~V} / 3 \mathrm{~A}$
	- physically isolated
	- closed when the circuit breaker has tripped
General data	
Ambient temperature	$0 . . .+60^{\circ} \mathrm{C}$ (without condensation)
Terminals	screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$ to DIN 46288
Housing	clamping plate: polycarbonate GV, blue cover: polycarbonate, black
Mounting	symmetric rail to EN 50022-35
Self-extinguishing properties	to UL 94: V = 0; VDE 0304: grade 1
Degree of protection(IEC 529/DIN 40050)	
Mounting dimensions	$45 \times 74 \times 128 \mathrm{~mm}$
Mass	approx. 320 g

Technical description

Under normal operating conditions, the E-T-A SSRPC E-1071-353 allows the connection or disconnection of the load outputs of two channels independent of each other.

Control circuits (I/II)

The control current flows through the LED and the opto coupler immediately a voltage higher than $8.5 \mathrm{~V}(\hat{=}$ control signal " 1 ") is applied at the input terminals (6 and 7 , or 10 and 7). The opto coupler transmits the signal to the load circuit, at the same time switching the load transistor on. This signal is transmitted as a status signal to all monitoring circuits. The input protection diode protects the control voltage from incorrect polarization. Control current limitation is provided by a constant current diode.

Load circuits (I/II)

The load circuit is switched ON or OFF according to the control signal ("0" or "1"), with electronic circuits monitoring the load circuit for faults such as overload or short-circuit. Should one of these faults occur, the monitoring circuitry will immediately react, causing the load transistor to disconnect and the circuit breaker to trip. Transistor disconnection occurs according to the storage time characteristics. The storage time increases noise immunity avoiding disconnection of non-harmful peaks such as those caused by inrush currents from lamp load connection. Storage time is not a constant quantity but is inversely proportional to the overcurrent factor.

After expiration of the storage time (see diagram) the load circuit transistor will become non-conductive. After approx. 5 s the isolator will switch off so as to disconnect the two load circuits. The common auxiliary contact closes signalling the fault. After removal of the fault, the SSRPC can be reactivated by pushing the isolator button.

Status outputs

Status indication is provided by 4 LEDs ($2 \times$ RED, $2 \times$ GREEN $)$.
RED LED
ON indication (I/II)
The red LED indicates when the control voltage is higher than 8.5 V , with control current flowing.

GREEN LED

Current flow indication (I/II)
The green LED indicates when the load current is above 0.1 A .
Faults such as too high a resistance, wire break, poor contact, or overload/short-circuit, are available when only the red LED indicates.

The SSRPC E-1071-353 includes three current measuring terminals (4 mm dia.) on the front. These terminals provide for load current measurement in terms of voltage drop at the 0.1Ω shunt in the load circuit (I/II).

Storage time characteristic curve $\mathrm{t}_{\mathrm{S}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Operating modes

Operating status	Fault-free operation		Short-circuit on the load		Wire break	
Control input	$" 0 "$	$" 1 "$	$" 1 "$	$" 0 "$	$" 1 "$	
RED LED - control current	0	1	1	0	1	
GREEN LED - Load current monitoring	0	1	0	0	0	
Auxiliary contact	open	open	closed	open	open	
Remarks	Ioad OFF	load ON	both load circuits disconnected			

1 - LED indicates
0 - LED does not indicate

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Basic circuit diagram

Terminal selection

Terminal

operating voltage + US: DC 20... 48 V operating voltage $-U_{S}$
load (+) (carrying plus potential) CAUTION: Do not connect to GND/-US
load I (-)
load II (-)
control voltage I +U $\mathrm{U}_{\text {Contr: }}$ max. DC 35 V
control voltage I, II -U Contr
auxiliary contact
auxiliary contact
auxiliary voltage II +U Contr: max. DC 35 V

All dimensions without tolerances are for reference only. In the interest of improved design

Description

The E-T-A Solid State Remote Power Controller E-1072-100 is a double pole electronic switching amplifier suitable for resistive and inductive loads (solenoids, magnetic brakes etc.) as well as for lamp loads and capacitive loads.

The double pole electronic switching output eliminates inadvertent start-up or dangerous machine movements as may arise upon a ground fault in systems with ungrounded power supply ('IT systems') (see Machinery Directive EN 60204 part 1, para. 9.4.3.1).

Typical applications

- Two pole actuator switching for machinery and plants.
- Monitoring of the electrical functionability of these loads.
- In-rush current limitation of lamp and capacitive loads.
- Protection of load circuit cables.
- ON and fault indication (by LEDs or RED trip button) and signalling (via potential-free auxiliary contacts).
- Two pole physical isolation upon overload or when tripped manually.

Features

- PLC controllable electronic switching amplifier (max. 3 A) with additional protective and control functions for DC 24 V loads (e.g. solenoids, magnetic brakes, electromagnetic clutches, monitoring and indicator lamps).
- Overload and short-circuit proof double pole switching output with in-rush current and short-circuit limitation.
- Electronic disconnection upon
- an overload in the load circuit,
- short-circuit in the load (load+/load-, load+/-U U_{S}, and load- $/+\mathrm{U}_{\mathrm{S}}$), followed by 2-pole isolation of the load circuit (via relay contacts).
- Control input "In/Ctrl" with control current indication (YELLOW LED).
- "O.K." and availability indication (GREEN LED).
- Short-circuit and overload indication (fault indication F and RED LED).
- "Err1" group fault signalisation - all faults will be signalled:
- wire breakage in the load circuit
- earth fault at switching output
- internal faults
- overload or short circuit in the load circuit
- "Err2" fault signalisation:
- only overload or short circuit in the load circuit
- reset required
- Integral protection against reverse polarity and overvoltage for the control and load circuit.

Ordering information

Technical data (Tambient $=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Voltage rating U_{N}	DC 24 V
Operating voltage U_{S}	DC $19.2 \ldots . .36 \mathrm{~V}$
Current rating I_{N}	max. 3 A
Current consumption I_{0}	typically 24 mA
$\left(U_{\text {Contr }}=\right.$ " 0 ")	
Power loss $\mathrm{P}_{\text {max }}\left(I_{\mathrm{N}}=3 \mathrm{~A}\right)$	typically 3.5 W

Residual ripple for all voltages max. 5 \% (3 phase bridge)
Reverse polarity protection U_{S} integral $->$ fault release, LEDs not
lighting
Caution: Ensure free travel of actuator button.
Insulation voltage
AC 500 V (control circuit, load circuit, fault indication "Err1" and "Err2")

Load Circuit

Load output
(term. 31-term. 32)
Max. load data
Min. load data
Voltage drop at I_{N}
Switch times ($\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}$)
Overload disconnection
Trip time ($l_{\text {load }}=2 \times I_{N}$)
Short-circuit current I_{K}
Trip time (upon I_{K})

Wire break monitoring

Supervision of load circuit with the load switched on, the load
($U_{\text {Contit }}=" 1$ ") minimum current $I_{\text {load }}<30 \mathrm{~mA}$ current is monitored via the two switching outputs GREEN LED indicates (OK signal), $\mathrm{I}_{\text {load }}>30 \mathrm{~mA}$
Leakage current $\left(U_{\text {Contr }}=\right.$ " 0 ") typically 1 mA
Leakage current ($\mathrm{U}_{\text {Contr }}=$ " 0 ")
Free-wheeling circuitry
Load current measurement
(term. 33 : +shunt/ integral Load current measurement no isolation of load circuit required as a
Leakage current ($\mathrm{U}_{\text {Contr }}=$ " 0 ")
Free-wheeling circuitry
Load current measurement
(term. 33 : +shunt/ term. 34: -shunt)

Isolation of load circuit
two pole switching output (minus and plus switching), MOS transistors
DC 24 V/3 A (no derating over the entire temperature range!)
DC $24 \mathrm{~V} / 50 \mathrm{~mA}$ (wire break threshold 30 mA)
typically $0.9 \mathrm{~V}\left(\mathrm{R}_{\mathrm{i}}\right.$ typically $\left.300 \mathrm{~m} \Omega\right)$ typically 2 ms (resistive load) approx $1.15 \times \mathrm{I}_{\mathrm{N}}$ (typically 3.45 A) typically 400 ms
typically 12 A current limitation typically $50 \mathrm{~ms}, 2$-pole isolation of load circuit after approx. 200 ms
\rightarrow RED LED indicates, fault indication F "Err1" and "Err2"
with the load switched on or off; RED LED
"Error" lighted, group fault signalisation
"Err1"
$\left(\mathrm{U}_{\text {Contr }}=\right.$ " 0 ") wire break threshold $\mathrm{R}_{\text {load }}>10 \mathrm{k} \Omega$ $0.1 \Omega / \pm 1 \%$ measuring shunt is integral with the device.
Measurement by voltmeter terminal 33 -
terminal $34(100 \mathrm{mV}=1 \mathrm{~A})$
2-pole by relay contacts

- by manual release of RED button
- approx. 200 ms after electronic tripping due to overload or short circuit ("OFF")

Technical data (cont'd)

Signal delay

\qquad
General data
Ambient Temperature Storage temperature Terminals

Back-up protection for SSRPC

Housing material
Mounting
Vibration
Degree of protection
(IEC 529/DIN 40050)
EMC
Mounting dimensions
Mass

\section*{Control circuit
 Control "In/Ctrl"
 Control voltage $\mathrm{U}_{\text {Contr }}$
 Control voltage $\mathrm{I}_{\text {Contr }}$
 Switching frequency $f_{\text {max }}$
 Control signal ($U_{\text {Contr }}$ " 1 ")
 | Protection |
| :--- |
| Fault indication |
 "Err1"}

Fault indication "Err1"
internal low-level signal relay in control input (with integral free-wheeling diode)
"0" : 0...2.4 V
"1": 18... 32 V
typically $5 \ldots . .10 \mathrm{~mA}$
10 Hz
"In/Ctrl" YELLOW LED lights with $\mathrm{I}_{\text {Contr }}$ flowing
reverse polarity protection (diode), overvoltage protection (varistor)
group fault signalisation potential-free relay contact N/O,
DC 30 V/0.5 mA.... 1 A

- wire breakage in the load circuit
- load current < 30 mA
- other faults (ground fault in load circuit or internal fault)
- overload/short circuit (= "Err2")
- LED RED "Error" lighted
- LED GREEN "O.K." not lighted
- relay contact "Err1" closed

Signal delay
"Err2"

Fault indication »Err2"
fault indication
potenial-free auxiliary contact, make contact N/O,
DC $30 \mathrm{~V} / 0.5 \mathrm{~mA} . . .1 \mathrm{~A}$

- overload or short circuit in the load circuit
- LED RED "Error" lighted
- LED GREEN "O.K." not lighted
- relay contact "Err1" closed
- auxiliary contact "Err2" closed
- RED button "OFF"
- reset required
- load circuit isolated 2-pole
- manual release "OFF"
- reverse polarity of U_{S} (LEDs not indicating) typically 200 ms
$0 . . .+50^{\circ} \mathrm{C}$ (without condensation) $-20 \ldots+70^{\circ} \mathrm{C}$
COMBICON MSTBO 2.5/4 1x2.5 mm² max. 16-pole
Some are double terminals -> loop-through possibility (continuous load max. 6 A)
circuit breaker for plus line
(term. 41/42):
depending on power supply capacity and number of loop-through arrangements, max. 12 A (= max. continuous load of the COMBICON terminals)
PA 66-FR
symmetric rail to EN 50022-35
3 g , to IEC 60068-2-6 test Fc
P20 housing
IP20 terminals
emitted interference EN 50081-1
interference suppression EN 61000-6-2 $22.5 \times 99 \times 122 \mathrm{~mm}(\mathrm{w} \times \mathrm{h} \times \mathrm{d})$ approx. 130 g

Status matrix

Operating status	Fault-free operation		Short circuit/ overload in load circuit	Wire break in load circuit		Other faults
Control input	"0"	"1"	"1"	"0"	"1"	"0"
Load output	OFF 2-pole non- conductive	ON 2-pole conductive	OFF 2-pole nonconductive	OFF 2-pole nonconductive	$\begin{gathered} \text { ON } \\ \text { 2-pole } \\ \text { non- } \\ \text { contuctive } \end{gathered}$	OFF 2-pole nonconductive
Load circuit isolated 2 pole (via relay contacts)	no	no	yes	no	no	no

Indication						
YELLOW LED "In/Ctrl"	0	1	1	0	1	0
GREEN LED "O.K."	1	1	0	0	0	0
RED LED "Error"	0	0	1	1	1	1
relay contacts "Err1"	open	open	closed	closed	closed	closed
auxiliary contacts "Err2"	open	open	closed	open	open	open
RED operating/ reset button	ON	ON	$\begin{aligned} & \text { OFF } \\ & (" \mathrm{OFF} \text { ") } \end{aligned}$	ON	ON	ON
Remark	availability	$\begin{aligned} & \text { load: } \\ & >30 \mathrm{~mA} \\ & <3 \mathrm{~A} \end{aligned}$	RED button to be reset			ground faut in load circuit or internal fault

1 = LED lights
$0=$ LED does not light

Operating modes at:

- reverse polarity: indication of fault "Err2"; LEDs not illuminated!
- manual release "OFF" (RED button out): indication of fault "Err1" and "Err2", additionally lighted LED RED "Error".
- with $U_{S}=0$ V: not fault indication "Err1".

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Basic circuit diagram

 performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Connection diagram

Terminal selection

Level	Terminal	Remark		
1	11	$+U_{\text {Contr }}$ (control voltage plus)		
1	$13 / 14$	$-U_{\text {Contr }}$ (control voltage minus)	DC 18...32 V	
1	12	not use		
2	21	"Err2" fault indication OL/SC (signal contact	NO)	
2	$22 / 23$	joint terminal "Err1", "Err2"	C	
2	24	"Err1" group fault indication (relay contact	NO)	
3	31	load (+)	DC 24 V / max. 3 A	
3	32	load (-)		
3	$33 / 34$	load current measurement by voltmeter (shunt 0.1 $\Omega / \pm 1$ \% integral with device,		
4	$41 / 42$	$+U_{S}$ (operating voltage plus)	DC 19.2...36 V	
4	$43 / 44$	$-U_{S}$ (operating voltage minus)		

Cable side (bottom)

Description

The E-T-A Solid State Remote Power Controller E-1072-2. complies with the EC Machinery Directive 98/37/EG and meets the requirements of EN60204 part 1 "Electrical equipment of machinery, safety of machinery" in ungrounded DC 24 V supply systems ("IT systems").

The E-1072-2.. is a double pole electronic switching amplifier for magnetic valves (hydraulic and pneumatic mechanisms), magnetic brakes and magnetic couplings with rated voltage DC 24 V and a max. current rating of 1 A or 2 A . It combines true circuit breaker characteristics with additional diagnostic functions.

Why use the E-1072-2.

- for double pole switching of actuators (magnetic valves, magnetic brakes) in machinery and equipment
- for monitoring the electronic function of the loads and signal to the PLC
- for preventing a voltage dip of the DC 24 V output voltage in a switch-mode power supply, in the event of a short circuit, as a true 2 pole, remotely controllable electronic circuit breaker
- for protecting the cables of the load circuit
- for status signalling and for visually indicating load circuit faults (LEDs or RED trip button) via potential-free signal contacts
- for double-pole physical isolation of the load circuit - manually or electrically in the event of a failure (short circuit/overload)

Features

- Voltage rating DC 24 V (19.2... 36 V)
- Current rating I_{N} max. 1 A or $2 \mathrm{~A}(\mathrm{~min}$. load current 30 mA$)$
- Activates and monitors DC 24 V magnetic valves
- PLC controllable 2 pole remote power controller with physical isolation of control input
- Switching output with integral current limitation to $2 \times I_{N}$
- Disconnection of load in the event of short circuit or overload, followed by double pole physical isolation of load
- Permanent wire break monitoring of load circuit
- Group fault signalisation via relay contact "Err1"
- Additional signal contact "Err2" when integral circuit breaker has tripped due to short circuit or overload in the load circuit
- LED displays: LED green: OK

LED red: Error
LED yellow In/Ctrl (control current indication)

- Integral reverse polarity protection and overload protection for control and load circuit
- No back-up fuse required due to integral fail-safe element
- Track-mountable, width 22.5 mm

Additional feature E-1072-210

- additional "status indication" relay output to facilitate confirmation to a PLC, for example, of activation and a load current > 30 mA .
Additional feature E-1072-220 (see fig. "inrush current curve magnetic valves")
- Analogue output 4-20 mA proportional to load current enables permanent monitoring of magnetic valve circuits as well as recording of the load current via ET200 sub-assemblies or field bus modules (with analogue input). In addition it is possible to check the inrush current characteristic curve of a magnetic valve to determine whether the armature of the valve has moved or is stuck.

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)\left(\mathrm{T}_{\mathrm{U}}=\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Voltage rating U_{N}
Operating voltage U_{S}
Current rating I_{N}
Current consumption I_{0}
($\mathrm{U}_{\text {Contr }}=$ " 0 ")
Power loss $P_{\max }\left(l_{N}=1 A\right)$
typically 1.6 W
Residual ripple for all voltages max. 5 \% (3 phase bridge)
Reverse polarity protection U_{S} integral -> fault release, LEDs not lighting
Caution: Ensure free travel of actuator button.
Insulation voltage
AC 500 V (control circuit, load circuit, fault indication "Err1" and "Err2") indication "BM"

Load Circuit

Load output
(term. 31-term. 32)
Max. load data
Min. load data

DC 24 V

DC 19.2... 36 V
max. 1 A or 2 A
typically 25 mA
two pole switching output (minus and plus switching), MOS transistors DC $24 \mathrm{~V} / 1 \mathrm{~A}$ or 2 A (no derating over the entire temperature range!)
DC $24 \mathrm{~V} / 50 \mathrm{~mA}$ (wire break threshold 30 mA)
Voltage drop at $I_{N}\left(\right.$ with $I_{N}=1$ A) typically 0.8 V
Switching times ($\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$) typically 1 ms (resistive load)
Overload disconnection approx $1.15 \times I_{N}$
Trip time ($l_{\text {load }}=1.5 \times I_{N}$)
Short-circuit current I_{K}
Trip time (upon I_{K})
typically 1 s
typically $2 \times \mathrm{I}_{\mathrm{N}}$ current limitation
typically 300 ms at $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A}$,
100 ms at $\mathrm{I}_{\mathrm{N}}=2 \mathrm{~A}, 2$-pole isolation of
load circuit after approx. 20 ms
\rightarrow RED LED indicates, fault indication F "Err1" and "Err2"
with the load switched on or off; RED LED
"Error" lighted, group fault signalisation "Err1"
$\left(U_{\text {Contr }}=\right.$ " 0 ") wire break threshold $R_{\text {load }}>30 \mathrm{k} \Omega$
($\mathrm{U}_{\text {Contr }}=$ " 1 ") minimum current $\mathrm{l}_{\mathrm{load}}<30 \mathrm{~mA}$
Supervision of load circuit with the load switched on, the load current is monitored via the two switching outputs GREEN LED indicates (OK signal), $\mathrm{I}_{\text {oad }}>30 \mathrm{~mA}$
Leakage current ($\mathrm{U}_{\text {Contr }}=$ "0")typically 1 mA
Free-wheeling circuitry integral
Load current measurement no isolation of load circuit required as a (term. 33: +shunt/
term. 34: -shunt)

Isolation of load circuit
$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A}: 0.2 \Omega / 1 \%, \mathrm{I}_{\mathrm{N}}=2 \mathrm{~A}: 0.1 \Omega / 1 \%$ measuring shunt is integral with the device. Measurement by voltmeter terminal 33 terminal $34\left(200 \mathrm{mV}=\mathrm{I}_{\mathrm{N}}\right)$
2-pole by relay contacts

- by manual release of RED button
- approx. 20 ms after electronic tripping
due to overload or short circuit ("OFF")

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Control circuit
 Control "In/Ctrl"
 Control voltage $\mathrm{U}_{\text {Contr }}$
 Control voltage $\mathrm{I}_{\text {Contr }}$ Switching frequency $f_{\text {max }}$ Control signal ($U_{\text {Contr " }}{ }^{1 ")}$
 Protection
 Fault indication
 "Err1"

Fault indication "Err1"

Signal delay
"Err2"

Fault indication "Err2"
internal low-level signal relay in control input (with integral free-wheeling diode)
"0" : 0...2.4 V
"1": 18... 32 V
typically $5 . .10 \mathrm{~mA}$
10 Hz
"In/Ctrl" YELLOW LED lights with $I_{\text {Contr }}$ flowing
reverse polarity protection (diode),
overvoltage protection (varistor)
group fault signalisation
potential-free relay contact N/O, (closed circuit principle) DC $30 \mathrm{~V} / 5 \mathrm{~mA} . . .1 \mathrm{~A}$ relay contact "Err1" open

- wire breakage in the load circuit
- load current < 30 mA
- other faults (ground fault in load circuit or internal fault)
- overload/short circuit (= "Err2")
- LED RED "Error" lighted
- LED GREEN "O.K." not lighted
- relay contact "Err1" closed
typically 600 ms
fault indication
potenial-free auxiliary contact, make contact N/O,
DC $30 \mathrm{~V} / 5 \mathrm{~mA} . . .1 \mathrm{~A}$
signal contact "Err2" closed
- overload or short circuit in the load circuit
- LED RED "Error" lighted
- LED GREEN "O.K." not lighted
- relay contact "Err1" open
- auxiliary contact "Err2" closed
- RED button "OFF"
- reset required
- 2-pole physical isolation in load circuit
- manual release "OFF"
- reverse polarity of U_{S} (LEDs not indicating)

Option -210

Function "BM"

Option -220

	(term. 44) $\mathrm{U}_{\text {Contr }}=$ " 0 " $->4 \mathrm{~mA}$ $U_{\text {Contr }}=$ " 0 " $\rightarrow 4 \mathrm{~mA}$ with 0 A (load current) 20 mA with I_{N} Accuracy: $\pm 5 \%$ of measured value
General data	
Ambient Temperature	$0 . . .+50^{\circ} \mathrm{C}$ (without condensation)
Storage temperature	$-20 . . .+70^{\circ} \mathrm{C}$
Terminals	COMBICON MSTBO $2.5 / 41 \times 2.5 \mathrm{~mm}^{2}$ max. 16-pole
	Some are double terminals -> loop-through possibility (continuous load max. 6 A)
Back-up protection for SSRPC	not required because of integral fail-safe element with VDE approval
Housing material	PA 66-FR
Mounting	symmetric rail to EN 50022-35
Vibration	3 g , to IEC 60068-2-6 test Fc
Degree of protection	IP20 housing
(IEC 529/DIN 40050)	IP20 terminals
EMC	emitted interference EN 50081-1
	interference suppression EN 61000-6-2
Mounting dimensions	$22.5 \times 99 \times 122 \mathrm{~mm}$ ($\mathrm{m} \times \mathrm{hxd}$)
Mass	approx. 130 g

potential-free relay contact
DC $30 \mathrm{~V} / 5 \mathrm{~mA} . .1 \mathrm{~A}$
relay contact closed, if $\mathrm{I}_{\text {load }}>30 \mathrm{~mA}$ relay contact open, with wire breakage and after trip of circuit breaker analogue output proportional to load current "ANA" 4-20 mA, max. load 500Ω on $-U_{S}$ (term. 44)
$\mathrm{U}_{\text {Contr }}=" 0$ " $\rightarrow 4 \mathrm{~mA}$
$\mathrm{U}_{\text {Contr }}=$ " 0 " $\rightarrow 4 \mathrm{~mA}$ with 0 A (load current)
20 mA with I_{N}
0... $+50^{\circ} \mathrm{C}$ (without condensation)
$-20 . .+70{ }^{\circ} \mathrm{C}$
COMBICON MSTBO 2.5/4 1x2.5 mm² max

Some are double terminals -> loop-through
 pequired because of integral fail-safe element with VDE approval
PA 66-FR
gym
g,tolEC 60068-2-6
P20 housing
emitted interference EN 50081-1
interference suppression EN 61000-6-2
approx. 130 g

Ordering information

Status matrix						
Operating status	Fault-free operation		Short circuit/ overload in load circuit	Wire break in load circuit		Other faults
Control input	"0"	"1"	"1"	"0"	"1"	"0"
Load output	OFF 2-pole non- conductive	$\begin{array}{\|c\|} \hline \mathrm{ON} \\ \text { 2-pole } \\ \text { conductive } \end{array}$	OFF 2-pole nonconductive	OFF 2-pole nonconductive	ON 2-pole noncontuctive	OFF 2-pole nonconductive
Load circuit isolated 2 pole (via relay contacts)	no	no	yes	no	no	no

Indication						
YELLOW LED "In/Ctrl"	0	1	1	0	1	0
GREEN LED "O.K."	1	1	0	0	0	0
RED LED "Error"	0	0	1	1	1	1
relay contacts "Err1" (group fault)	closed	closed	open	open	open	open
auxiliary contacts "Err2" (circuit breaker)	open	open	closed	open	open	open
RED operating/ reset button	ON	ON	OFF "OFF"	ON	ON	ON
relays contact "BM" indication option-210	open	closed	open	open	open	open
analgo output option-220	4 mA	$\begin{aligned} & 4 \mathrm{~mA} . . \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} >20 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ \hline \end{gathered}$	4 mA	4 mA	4 mA
Remark	available	$\begin{aligned} & \text { load: } \\ & >30 \mathrm{~mA} \\ & <1 \mathrm{~A} \text { or } \\ & 2 \mathrm{~A} \mathrm{I}_{\mathrm{N}} \end{aligned}$	RED button to be reset		$\begin{aligned} & l_{\text {load: }} \\ & <30 \mathrm{~mA} \end{aligned}$	ground fault in load circuit or internal fault

1 = LED lights
$0=$ LED does not light

Operating modes at:

- reverse polarity: indication of fault "Err2"; LEDs not illuminated!
- manual release "OFF" (RED button out): indication of fault "Err1" and "Err2", additionally lighted LED RED "Error".
- with $U_{S}=0 \mathrm{~V}$: group fault signalisation »Err1" (closed circuit principle)

ZEFAP Solid State Remote Power Controller E-1072-2.

Dimensions

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$

Basic circuit diagram -210

Inrush current curve magnetic valve

Connection diagram

21 22 23 24 1 1
(eatera
$\begin{aligned} & 1072-220- \\ & \mathrm{DC} 24 \mathrm{~V} / 1 \mathrm{~A} \end{aligned}$
41 42 43 44

Basic circuit diagram -220

Termina				
Level	Terminal	Remark		
1	11	$+\mathrm{U}_{\text {contr }}$ (Control voltage plus)		DC 18... 32 V
	12	not used		
	13/14	$-\mathrm{U}_{\text {Contr }}$ (Vontrol voltage minus)		
2	21	option-210: status indication "BM" (relay contact)	option-220:	KI. 21 (+)
	22		analog output 4-20 mA	Kt Kl. 22 (-)
	23/24	"Err1" group fault signalisation (relay contact)		
3	31			
	32	load (-) DC $24 \mathrm{~V} / 1 \mathbf{A}$ (or 2 A)		
	$33 / 34$	load current measurement by voltmeter $\mathrm{I}_{\mathrm{N}}=1 \mathrm{~A}$: shunt $0.2 \Omega / 1 \%$		
		$\mathrm{I}_{\mathrm{N}}=2 \mathrm{~A}$: shunt $0.1 \Omega / 1 \%$		
		shunt integral with device KI. 33: shunt+ / KI. 34: shunt-		
4	$41 / 42$	"Err2" indication of fault circuit breaker (auxiliary contact)		
	43	$+\mathrm{U}_{\mathrm{S}}$ (operating voltage plus)		DC 19.2... 36 V
	44	$-\mathrm{U}_{\mathrm{S}}$ (operating voltage minus) DC 19.2...36 V		

Top side

21	22	23	24	
11	12	13	14	
31	32	33	34	
41	42	43	44	

LEVEL 2
LEVEL 1

LEVEL 3
LEVEL 4
Cable side (bottom)

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Description

The E-T-A Solid State Remote Power Controller E-1072 is a double pole electronic switching amplifier suitable for resistive and inductive loads (solenoids, magnetic brakes etc.) as well as for lamp loads and capacitive loads.

The double pole electronic switching output eliminates inadvertent start-up or dangerous machine movements as may arise upon a ground fault in systems with ungrounded power supply ("IT systems") (see Machinery Directive EN 60204 part 1).

Typical applications

- Two pole actuator switching for machinery and plants.
- Monitoring of the electrical functionability of these loads.
- In-rush current limitation of lamp and capacitive loads.
- Protection of load circuit cables.
- ON and fault indication (by LEDs or RED trip button) and signalling (via potential-free auxiliary contact).
- Two pole physical isolation upon overload or when tripped manually.

Features

- PLC controllable electronic switching amplifier (max. 3 A) with additional protective and control functions for DC 24 V loads (e. g. solenoids, magnetic brakes, electromagnetic clutches, monitoring and indicator lamps).
- Overload and short-circuit proof double pole switching output with in-rush current and short-circuit limitation.
- Electronic disconnection upon
- an overload in the load circuit,
- short-circuit in the load (load+/load-, load+/-U U_{S}, and load-/+U U_{S}), followed by 2-pole isolation of the load circuit (via relay contacts).
- Control input with control current indication (YELLOW LED).
- OK and availability indication (GREEN LED).
- Short-circuit and overload indication (fault indication F and RED LED).
- Continuous wire break monitoring of the load circuit (fault indication F and ORANGE LED).
- Additional supervision of the power transistors and load output potential (e.g. ground fault) when not energized. Deviation from required state is indicated as an internal fault (fault indication F, RED + ORANGE LEDs).
- Integral reverse polarity and overvoltage protection of control and load circuits.
- Integral fault indication F (wire break, short-circuit, overload, ground fault, internal fault)
- switch contact (N/O) with external status indication (RED actuator button tripped).
- internal fault storage (push RED button to reset).

Ordering information

Technical data (Tambient $=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Voltage rating U_{N}	DC 24 V
Operating voltage U_{S}	DC 19.2... 36 V
Current rating I_{N}	max. 3 A
Current consumption Io $\left(U_{\text {Contr }}=\text { " } 0 "\right)$	typically 24 mA
Power loss $\mathrm{P}_{\max }\left(l_{N}=3 \mathrm{~A}\right)$	typically 3.5 W
Residual ripple for all voltages	max. 5 \% (3 phase bridge)
Reverse polarity protection US_{S}	integral -> fault release, LEDs not lighting Caution: Ensure free travel of actuator button.
Insulation voltage	AC 500 V (control circuit, load circuit, fault indication)
Load circuit	
Load output (term. 31-term. 32)	two pole switching output (minus and plus switching), MOS transistors
Max. load data	DC $24 \mathrm{~V} / 3 \mathrm{~A}$ (no derating over the entire temperature range!)
Min. load data	DC $24 \mathrm{~V} / 50 \mathrm{~mA}$ (wire break threshold $30 \mathrm{~mA})$
Voltage drop at I_{N}	typically $0.9 \mathrm{~V}\left(\mathrm{R}_{\mathrm{i}}\right.$ typically $\left.300 \mathrm{~m} \Omega\right)$
Switch times ($\mathrm{t}_{\text {on }} / \mathrm{t}_{\text {off }}$)	typically 2 ms (resistive load)
Overload disconnection	approx $1.15 \times \mathrm{I}_{\mathrm{N}}$ (typically 3.45 A)
Trip time ($\mathrm{l}_{\text {oad }}=2 \times \mathrm{I}_{\mathrm{N}}$)	typically 400 ms
Short-circuit current I_{K}	typically 12 A current limitation
Trip time (upon I_{K})	typically $50 \mathrm{~ms}, 2$-pole isolation of load circuit after approx. 1 s \rightarrow RED LED indicates, fault indication F
Wire break monitoring	with the load switched on or off; RED button trips after approx. 1 s \rightarrow ORANGE LED indicates, fault indication F $\left(\mathrm{U}_{\text {Contr }}=\right.$ "0") wire break threshold $\mathrm{R}_{\text {load }}>120 \mathrm{k} \Omega$ ($U_{\text {Contr }}=" 1 "$) minimum current $I_{\text {load }}<30 \mathrm{~mA}$
Supervision of load circuit	with the load switched on, the load current is monitored via the two switching outputs GREEN LED indicates (OK signal), $l_{\text {load }}>30 \mathrm{~mA}$
Leakage current ($\mathrm{U}_{\text {Contr }}=$ "0") typically 1 mA	
Free-wheeling circuitry	integral
	Option (on request): additional quick release (max. 30 W load)
Load current measurement (term. 33: +shunt/) (term. 34: -shunt)	no isolation of load circuit required as a
	$0.1 \Omega / \pm 1 \%$ measuring shunt is integral with he device.
	Measurement by voltmeter terminal 33 terminal $34(100 \mathrm{mV}=1 \mathrm{~A})$
Isolation of load circuit	2 pole by relay contacts
	- by manual release of RED button
	- approx. 1 s after electronic fault sensing (wire break, overload, short-circuit, internal fault)

Technical data (cont'd)

Control circuit
 Control

Control voltage $\mathrm{U}_{\text {Contr }}$
Control voltage $\mathrm{I}_{\text {Contr }}$
Switching frequency $f_{\max } 10 \mathrm{~Hz}$
Control signal ($\mathrm{U}_{\text {Contr }}$ " 1 ") YELLOW LED lights with $\mathrm{I}_{\text {Contr }}$ flowing Protection reverse polarity protection (diode), overvoltage protection (varistor)

Fault indication

Fault indication F
Faults

LED
Potential-free auxiliary contact (hard gold plated N/O contact), DC $30 \mathrm{~V} / 0.5 \mathrm{~mA} . . .1 \mathrm{~A}$ Contact F1-F2 closed after RED button has tripped upon

- wire break in load circuit (ORANGE LED indicates)
- overload/short-circuit in load circuit (RED indicates)
- internal fault (RED + ORANGE LEDs indicate) (e. g. ground fault in load circuit, power transistor failure)
Faults indicated by the LEDs remain stored until the RED button is reset!
- manual release (GREEN LED indicates)
- reverse polarity of U_{S} (LEDs not indicating)

Signal delay
typically 1 s

General data

Ambient Temperature $0 \ldots+50^{\circ} \mathrm{C}$ (without condensation)

Storage temperature Terminals

Back-up protection for SSRPC

Housing material
Mounting
Vibration
Degree of protection
(IEC 529/DIN 40050)
EMC
1-1998)
Mass

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

short-circuit disconnection in typically 50 ms

Operating modes

Operating status	Fault-free operation		Load short circuited	Wire break in load circuit		Internal fault
Control input	"0"	"1"	$" 1 "$	"0"	"1"	"0"
Load output	OFF 2-pole non- conductive	ON 2-pole conductive	OFF 2-pole non- conductive			
Load circuit isolated 2 pole (via relay contacts)	no	no	yes	yes	yes	yes

Indication						
YELLOW LED control current	0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0
GREEN LED OK signal	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0
ORANGE LED wire break	0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
RED LED fault (short-circuit,	0	0	$\mathbf{1}$	0	0	$\mathbf{1}$
overload)	open	open	closed	closed	closed	closed
Fault auxiliary contacts	ON	ON	OFF	OFF	OFF	OFF
RED operating/ reset button	Remark					

1 = LED lights
$0=$ LED does not light
Faults indicated by the LEDs remain stored until the RED button is reset!

Operating modes at:

- reverse polarity: indication of fault F; LEDs not illuminated!
- manual release (RED button out): indication of fault F, GREEN LED lights!

Dimensions

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Basic circuit diagram

Connection diagram

Terminal selection

Level	Terminal	Remark		
1	11	$+\mathrm{U}_{\text {Contr }}$ (control voltage plus)	DC 18... 32 V	
1	$13 / 14$	$-\mathrm{U}_{\text {Contr }}$ (control voltage minus)		
1	12	not use		
2	21/22	F1 fault indication (circuit break	contact)	
2	23/24	F2 fault indication (circuit brea	contact) NO	
3	31	$\frac{\text { load (+) }}{\text { lo) }}$ (${ }^{\text {l }}$ DC 24 V / max. 3 A		
3	32			
3	33 / 34	load current measurement by voltmeter (shunt $0.1 \Omega / 1$ \% integral with device, $100 \mathrm{mV} \triangleq 1 \mathrm{~A}) \mathrm{KI} .33$: shunt+ / KI. 34: shunt-		
4	41/42	$+\mathrm{U}_{\mathrm{S}}$ (operating voltage plus)	DC 19.2... 36 V	
4	$43 / 44$	$-U_{S}$ (operating voltage minus)		

Top side

LEVEL 2 (fault indication)
LEVEL 1 (control input)

LEVEL 3 (load circuit)
LEVEL 4 (voltage supply)

Cable side (bottom)

屋

Connections and terminals

Line terminal X 22150301

suitable for
Power-D-Box with sockets pre-wired

Load output terminal protected	X 22284701
against reverse polarity	X 22262501

suitable for
19BGT-2-X8340-S02
19BGT-2-X8340-SZ4
X8340-S02
X8340-SZ4

Screw terminal X 21115601

suitable for
Module 17plus

Line terminal (max. 63 A) max. tightening torque 3.0 Nm X 22150301

Caution: cables must not be connected with terminal plugged in

Load output terminal proteced against reverse polarity (set: 4 moduled sleeves, 8 blade terminals $6.3 \times 0.8 \mathrm{~mm}$)
X 22284701 for cable cross section 0.7 ... $2.0 \mathrm{~mm}^{2}$
X 22262501 for cable cross section 2.5 ... $4.0 \mathrm{~mm}^{2}$ X 22284801 for cable cross section 4.0 ... $6.0 \mathrm{~mm}^{2}$

Screw terminal for busbar Y 30701611 X 21115601
non insulated
(max. $35 \mathrm{~m}^{2}$)

Labels

Label
marking area $6 \times 10 \mathrm{~mm} / .629 \times .394 \mathrm{in}$.
Y 30794261

Label

marking area $16 \times 13 \mathrm{~mm} / .629 \times .512 \mathrm{in}$.
Y 30832701

Label

markine area $46 \times 13 \mathrm{~mm} / 1.81 \times .512 \mathrm{in}$.
Y 30832801

Label white Y 30794261
ordering unit 10 pcs = 1 strip

Module 17plus

Label white Y 30832701 ordering unit 24 pcs $=1$ plate

suitable for

19BGT-2-X83S2
19BGT-2-X83S4
19BGT-2-X83Z4
19BGT-2-X8345

Label white Y 30832801 ordering unit 8 pcs = 1 plate

19BGT-2-2210
19BGT-2-3600
19BGT-2-ESS20
19BGT-2-ESX10
19BGT-2-X2210

屋

Blanking piece Y 30856341
suitable for
19BGT-2-ESS20
19BGT-2-ESX10
Blanking piece for Power-D-Box
(circuit breaker types ESS20, ESX10)
Y 30856341

Blanking piece Y 30856321

suitable for
19BGT-2-X8345
19BGT-2-X83S2
19BGT-2-X83S4
19BGT-2-X83Z4

Blanking piece for Power-D-Box
(circuit breaker types 8345, X8345-D01) Y 30856321

Mounting aids

Retaining clip for electronic circuit breaker ESS20/ESX10 recommended for fitting the devices
Y 30775401

Retaining clip for circuit breaker 3600/3900/E-1048/E-1079 recommended for fitting the devices
retaining clip
Y 30058111

Retaining clip for circuit breaker 2210 recommended for fitting single pole devices Y 30297421

Retaining clip for circuit breaker 3600/3900/E-1048/E-1079
recommended for fitting the devices
Y 30058103

23-P10-Si

63-P10-Si

Retaining clip Y 30775401

suitable for
Module 17 plus mit ESS20 Module 17 plus mit ESX10

Retaining clip Y 30058111

suitable for

socket type 17...	Module 17plus
with 3600	with 3600
3900	3900
E-1048-6..	E-1048-6..
E-1048-7..	E-1048-7..
E-1079-6..	E-1079-6..

Retaining clip Y 30297421

suitable for

```
socket type 17...
Module 17plus
```

with 2210-... with 2210-...

Retaining clip Y 30058103

suitable for
socket type 23...
socket type 63... with 3600

3900
E-1048-6..
E-1048-7..
E-1079-6..
with 3600
3900
E-1048-6..
E-1048-7..
E-1079-6..

EEPAC Power distribution systems - accessories

Mounting aids

Retaining clip Y 30297401

suitable for
socket type 23...
socket type 63...
with 2210-S..
with 2210-S...

Retaining clip for circuit breaker 2210-S...
recommended for fitting single pole devices Y 30297401

23-P10-Si

63-P10-Si

Screw and washer
 screw for mounting the Power-D-Box (19BGT)
 X 22301901

Barrier

for isolating the load terminals of the Power-D-Box (High-Power) Y 30813901

End bracket

recommended for fixing on symmetrical rails X 22200401

E-TFÅ Power distribution systems - accessories

Busbars and jumpers

Insulated wire bridge
X 22298401
packaging quantity: 10 pcs

Bus bar 32 A
X 22200501 blue insulated, 500 mm
X 22200502 red insulated, 500 mm
X 22200503 grey insulated, 500 mm

Bus bar 50 A
Y 30701601 non insulated, 500 mm

Bus bar for line entry on the side
(in combination with screw terminal $X 211156$ 01)
Y 30701611 non insulated, 500 mm

Jumper
X 22206601

Insulated wire bridge X 22298401
packaging quantity 1 pc = 10 wire bridges
suitable for
SVS.

Bus bar 32 A	X 22200501 blue
	X 22200502 red
	X 22200503 grey

suitable for

Module 17plus

Bus bar 50 A Y 30701601

suitable for
Module 17plus

Busbar Y 30701611
for line entry on the side
suitable for
Module 17plus

Jumper X 22206601 old version

suitable for
Module 17plus
SVS.
19BGT-2-2210
19BGT-2-3600/3900
19BGT-2-ESS20
9BGT-2-ESX10

New version see jumper SB-S11-P1-01-1-1A

EEPAC Power distribution systems - accessories

Busbars and jumpers	
Jumper SB-S11-P1-01-1-1A	Jumper SB-S11-P1-01-1-1A
suitable for Module 17 plus SVS... 19BGT-2-2210 19BGT-2-3600/390 19BGT-2-ESS20 19BGT-2-ESX10	
Connector bus link -P10 X 21058801 (brown) X 21058802 (black) X 21058803 (red) X 21058804 (blue)	Connector bus link -P10 X 210588 01/ $1.5 \mathrm{~mm}^{2}$, brown (up to 13 A max. load) X $21058802 / 2.5 \mathrm{~mm}^{2}$, black (up to 20 A max. load) X 210588 03/ $2.5 \mathrm{~mm}^{2}$, red (up to 20 A max. load) X 210588 04/ 2.5 mm2, blue (up to 20 A max. load)
suitable for Power-D-Box with sockets X 21153001	100 quick-connect tabs 6.3 (.250) DIN 46247 tinned brass, insulated
Bus bar 50 A X 22176011	Bus bar 50 A for socket 63-P10-Si X 22176011
suitable for Power-D-Box with socketsX 21153001	

Withdrawal tool for ESS20 /ESX10

Withdrawal tool

for removing circuit breaker type 8345
X 22254702

Withdrawal tool
for removing circuit breaker type 2210-S291 X 21101801

Withdrawal tool Y 30860201

suitable for
19BGT-2-ESS20
19BGT-2-ESX10

Withdrawal tool X 22254702

suitable for
19BGT-2-X8345
X8345-D01

Withdrawal tool X 21101801

suitable for
19BGT-2-X2210
X2210-S06...

19" 1 U Power-D-Box power distribution system (also for ETSI systems) accommodating plug-in thermal-magnetic circuit breakers type 2210-S or similar types, single or double pole, with or without signal contact.

8 single pole (or 4 double pole) circuit breakers are fitted transversely as vertical pairs, line entry is at the rear by means of screw terminals with 16 (25) mm^{2} cable cross section capacity. Redundant design of the system (2×4 single pole circuit breakers) is also available.

The load terminals are connected from the front by means of high current sub-D connectors or by means of screw terminals up to 4 mm^{2}. Auxiliary contact terminals can be connected form the rear (serial or parallel connection possible).

For replacing or retrofitting circuit breakers part of the front plate can be removed.

Above and below the circuit breakers are two narrow strips for customer-specific marking. Permanent marking is available ex factory for the front plate as an option.

Max. rating per way is 16 A (due to the derating of the circuit breakers mounted closely side-by-side), max. load of the line entry is 63 A at DC $65 \mathrm{~V} / \mathrm{AC} 250 \mathrm{~V}$.

3 U multi-channel solution

19" 3U racks (also for ETSI systems) for accommodating plug-in type 2210-S or similar, single pole or multipole, with or without auxiliary contacts.

Up to 60 single pole circuit breakers can be fitted (in 2 rows above each other). Standard version of the rack is supplied without wiring, but customerspecific wiring is possible upon request.

Type and size of line entry, wiring of load outputs, signal contact connection as well as fitting with connecting terminals will be to order.

For replacing or retrofitting circuit breakers part of the front plate can be removed. Unused ways can be covered with blanking pieces.

Above and below the circuit breakers customer-specific marking is possible. Permanent marking is available ex factory for the front plate as an option.

Max. rating per way is 16 A (due to the derating of the circuit breakers mounted closely side-by-side), max. load of the line entry is 63 A at $\mathrm{DC} 65 \mathrm{~V} / \mathrm{AC}$ 250 V.

High Power

Power distribution system for direct mounting to the rear wall of a control cabinet. Featuring type X8345-D01 power distribution rail with a variable number of modules possible.

Plug-in type 8345 circuit breakers are installed allowing load output currents of up to 125 A per module, with a maximum of 160 A for two adjacent positions.

Line entry is on the side, connected directly to internal busbars with up to 300 A at max. DC $110 \mathrm{~V} /$ AC 230 V .

Optional auxiliary contacts are also connected from the side by means of 2.8 mm blade terminals, all contacts are connected in parallel.

Reliable main and load terminal connections are by means of M10/M12 hexagonal screws.

The entire power distribution system is protected against brush contact by a slide-on plexi glass cover.

The system is mounted on the rear wall of a control cabinet by means of aluminium brackets. The system is also available as a version offering system redundancy.

The circuit breakers are hotswappable without removing the protective cover.

Above and below the circuit breakers customer-specific marking is possible. Permanent marking is available ex factory for the front plate as an option.

1 U rack for 19", 23" and ETSI systems for accommodating thermal circuit breakers type 482, single pole with or without auxiliary contact.

The rack is redundantly configurable with up to 8 circuit breakers ($\mathrm{A}+\mathrm{B}$ supply). Line entry is at the rear by means of screw terminals or optionally by means of pluggable connector technology. The system is also available with only one line entry (1×16 circuit breakers).

Load terminals are connected form the side via high current contacts (optionally from the rear via screw terminals). Auxiliary contact terminals are on the side (serial and parallel wiring), optional LED indication is configurable on the front.

For replacing or retrofitting circuit breakers the front plate can be removed. Circuit breakers must be switched off but may be replaced with power on.

Customer-specific marking of the front plate is possible.

Max load of one way is 50 A (please observe derating factor), max. load of the line entry is $2 x$ 450 A at DC 72 V (optionally AC 230 V or AC 115 V).

The Power-D-Box is a $2 \mathrm{U} \mathbf{1 9}^{\prime \prime}$ power distribution system (also for ETSI systems), accommodating plug-in type double pole thermalmagnetic circuit breakers 2210-S with auxiliary contacts.
All cable connections are on the front by means of feed-through terminals, partly pluggable.

Line entry is via two fixed feedthrough screw terminals up to $10 \mathrm{~mm}^{2}$ with cable feed from below, max. line current 50 A .
The load outputs are connected via double pole plug-in type screw terminals or alternatively spring-loaded terminals up to 4 mm^{2}. Polarisation is colourcoded. Cable feed is from the front. Max. load current is 16 A. All auxiliary contacts are combined as a group signal (series or parallel connection are possible) and also have plug-in type terminals up to $4 \mathrm{~mm}^{2}$. All connectors may optionally be fitted with a strain relief by means of wire wraps.

All terminals and circuit breakers are marked correspondingly.

The version shown above accommodates 8 double pole circuit breakers, variations upon request.

The front plate can be removed for replacing the circuit breakers.

Small compact power distribution system on printed circuit board to accommodate 6 plug-in type thermal overcurrent circuit breakers type 1180.

Line entry is on the rear via screw terminals up to $10 \mathrm{~mm}^{2}$, max. 16 A (back-up fuse required).
Load outputs are connected via a plug-in type screw terminal busbar, cable cross section 2.5 mm², max. 10 A .

Dimensions of the system are 90 $\times 50 \times 96 \mathrm{~mm}(1 \times \mathrm{w} \times \mathrm{d})$ including the installed circuit breakers.

Numbers of ways, termination as well as mechanical design of the power distribution system can be tailored to customers' needs.

Max. rated voltage DC 65 V , AC 250 V.

Two Power-D-Boxes, 1 U 19" power distribution systems, for use with thermal high-performance circuit breakers type 482.

The power distribution systems feature a redundant design with 2×4 ways.

Connection of all cables can be either from the rear or on the front.
Line entry is on the right and left sides by means of screw-type feed-through terminals up to $16 \mathrm{~mm}^{2}$ cable cross section, max. 100 A per side.
Load outputs are also via screwtype feed-through terminals up to $10 \mathrm{~mm}^{2}$, max. 50 A per way (please observe derating factor of the circuit breakers).

Plug-in design of the circuit breakers allows easy adaptation to changing loads.

The max. installation depth is less than 180 mm including front and rear screw terminals.

Max. rated voltage is DC 72 V or AC 230 V.

Description

Module 17plus is a power distribution system for use with E-T-A circuit breakers type 2210-S... or 3600-.../3900-... or electronic circuit breaker ESS20 or SSRPC E-1048-7... Each module accommodates two single pole plug-in circuit breakers with an individual housing width of only 12.5 mm and fits onto all industry standard mounting rails.

The two-way modules can be interconnected to provide as many ways as required with a terminal block fitted at each end for connection of signalling circuits. A distribution busbar can be fitted on the supply side of the modules, but each pole of multipole circuit breakers must be individually connected. Electrical connections are by means of screwless spring loaded terminals.
Suitable electro-mechanical circuit breakers have integral make and break auxiliary contacts. Depending on the application these may be used for either single or group signalisation. For group signalisation, the make contacts (which open in the event of a fault) are connected in series to the terminal blocks of the modules. The module is designed to accommodate a probe for series connection continuity tests. When multipole circuit breakers are fitted auxiliary contacts are required for each pole.
Single signalisation is achieved through use of the break contacts (which close in the event of failure) connected in parallel by means of terminals on each module. Both types of signalisation (individual and group signalisation) are available at the same time if the circuit breakers used provide auxiliary contacts (please note when ordering). The signalling circuitry between modules is automatically connected when modules are linked together.

Meets the requirements of UL60950

Ordering information

For thermal magnetic circuit breakers types 2210-S, 3600, 3900: For electronic circuit breaker type ESS20:
For solid state remote power controller E-1048-7..:

17PLUS-Q02-00 17PLUS-QAO-LR	Module 17plus, centre piece, two-way one each left- and right-side terminal block for supply feed from the side by means of screw terminal
Technical data of:	please see:
Circuit Breaker 2210-S, 3600, 3900	product group 2 Electronic Circuit Breaker ESS20, ESX10
Solid State Remote Power Controller E-1048-7..	product group 5 6

Approvals		
Authority	Voltage ratings	Current ratings
UL USA + Canada	AC 250 V; DC 80 V	50 A

Technical data

Connection diagram

Example for circuit breaker types 2210, 3600, 3900

[^27]For connection diagram for electronic circuit breakers and components please see relevant data sheets of types ESS20, ESS21, E-1048-7..

Installation example

Installation:
1 Clip modules onto DIN rails.
2 Push modules together (side-by-side)
3 Snap on right-side and left-side terminal blocks.
4 Cut busbar to required length and fit on supply side of the modules.
5 Connect line feed with spring-loaded terminals
6 Plug in circuit breakers.

Connection and disconnection of cables with screw driver

Module 17plus for electronic overcurrent protection

For technical data, dimensions, mounting examples, schematic diagrams and connection diagrams of

- ESS20-0... please see product group 5
- ESS20-1... please see product group 5
- ESX10 please see product group 5
- E-1048-7... please see product group 6

Busbar 32 A

X 22200501 blue insulation, $500 \mathrm{~mm} / 19.68$ in.
X 22200502 red insulation, $500 \mathrm{~mm} / 19.68$ in.
X 22200503 grey insulation, $500 \mathrm{~mm} / 19.68 \mathrm{in}$.

Busbar 50 A

Y 30701601 non-insulated, 500 mm/19.68 in.

Busbar 50 A
Y 30701611 non-insulated, 500 mm/19.68 in.

End bracket

 X 22200401Screw terminal for busbar X 21115601 non insulated (up to $35 \mathrm{~mm}^{2}$)

Retaining clip for circuit breaker 3600/3900 recommended for fitting the devices Y 30058111

Retaining clip for circuit breaker 2210
recommended for fitting single pole devices
Y 30297421

Jumper X 22206601

Labels

marking area $6 \times 10 \mathrm{~mm}$
(ordering unit 10 pcs $=1$ strip)
Y 30794261

Description

The E-T-A power distribution system SVS02 is designed to accommodate the electronic circuit breaker series ESS20-003 or electronic circuit protector ESX10. It distributes the current supplied by a switch mode power supply up to 40 A to $4,8,12$ or 16 channels. Input connections are via screw terminals. The individual circuit breakers can be plugged in. Loads are connected via spring-loaded screwless terminals. The power distribution includes integral wiring of the signalisation of the individual channels which can be combined to a group signal. The SVS02 can be snapped onto a DIN symmetrical rail.

Suitable for	\bullet ESS20-003
	\bullet ESX10-103
	$\bullet 2210-$ S21.
	$\bullet 3600$

Ordering information

Type

SVS02 Power distribution system for ESS20-003

- short circuit current limited DC 24 V applications
- max. 40 A continuous load
- two integral circuit breakers (CB1 and CB2): overcurrent protection of group signalisation of power distribution system, red LED glashes upon trip of CB1
- 2 insulated wire bridges Y 30388108 included
- without jumpers X 22206601 (for unused positions) Version, max. number of circuit breakers ESS20-003 on the power distribution system
044 channels (F1...F4)
088 channels (F1...F8)
1212 channels (F1...F12)
1616 channels (F1...F16)
Screw terminals for power supply DC 24 V
P310 3 loop-through terminals (X 21) max. $10 \mathrm{~mm}^{2}$
for DC $24 \mathrm{~V}(+) / \mathrm{DC} 24 \mathrm{~V}(-) /$ FE functional earth
Load outputs per channel (F1 .. Fn, n = 04, 08, 12, 16)
L50 5 load outputs per channel, max. 8 A each
- (L+S) group output (+) internally bridged over all channels
- (L+L) protected load output (+), per channel
- $(-)$ DC 24 V (-)
- $(-) \quad$ DC $24 \mathrm{~V}(-)$
- (FE) functional earth

Signal outputs
S15 1 signal terminal (X31) for
group signal, 5 -pole, complete with plug-in terminal, wiring $5 \times \max .2 .5 \mathrm{~mm}^{2} /$ without connector sleeve, max. 0.5 A :

- (+) internal +DC 24 V supply for signalisation via insulated wire bridge from (+) to (SC)
- (SC) external supply possible +DC 24 V for signalisation
- (SO) signal output
group signalisation
- (-) additional output DC $24 \mathrm{~V}(-)$
- (FE) additional functional earth Control input
E00 without control input
Fitting variants
B10 complete with screwless spring-loaded terminals, (max. $2.5 \mathrm{~mm}^{2}$, without connector sleeve) (standard)
B20 complete with plug-in screw terminals (max. $2.5 \mathrm{~mm}^{2}$, without connector sleeve)

Technical data

- Modular Power distribution system for short-circuit limited DC 24 V applications up to max. 40 A continuous load, max. voltage DC 32 V .
- Three screw terminals (max. $\left.10 \mathrm{~mm}^{2} / \mathrm{AWG} 8\right)$ for:
- DC $24 \mathrm{~V}(+)=\mathrm{X} 21+$
- DC $24 \mathrm{~V}(-)=X 21$ -
- FE (functional earth) = X 21 FE
for connecting the DC 24 V power supply max. 40 A
- Modular design ESS20-positions F1...F4 (..F8, ...F12 or ...F16):
- SVS02-04 / 4 channels / F1...F4 = KI. X1...X4
- SVS02-08 / 8 channels / F1...F8 = KI. X1...X8
- SVS02-12 / 12 channels / F1...F12 = KI. X1...X12
- SVS02-16 / 16 channels / F1...F16 = KI. X1...X16
- 5 load outputs per channel complete with Combicon screwless connectors, wiring $5 \times$ max. $2.5 \mathrm{~mm}^{2}$ (AWG 14)/ without connector sleeve max. 8 A:
- (L+S) group output (+), internally bridged across all channels
- (L+L) load output (+), per channel
- (-) DC 24 V (-)
- (-) DC $24 \mathrm{~V}(-)$
- (FE) functional earth
- Signal terminal (X31) for group signal complete with Combicon screwless connectors, wiring $5 \times$ max. $2.5 \mathrm{~mm}^{2}$ (AWG 14)/ without connector sleeve, max. 0.5 A (signal contact ESS20):
- (+) internal +DC 24 V supply for signalisation of terminal X 21 + via insulated jumper from (+) to (SC), protected by CB2
- (SC) external supply possible +DC 24 V for signalisation, protected by CB1
- (SO) signal output group signalisation
- (-) additional output DC $24 \mathrm{~V}(-)$
- (FE) additional functional earth
- Selective overcurrent protection CB1 and CB2 for group signalisation of the power distribution system, red LED blinks after CB1 has tripped (see schematic diagram).
Reset of circuit breakers: momentarily press red actuator button
- Protection class to: IP20
- Insulation co-ordination to IEC 60934: 0.5 kV / pollution degree 2
- Dielectric strength AC 500 V
- Temperature range: $0 . . .50^{\circ} \mathrm{C}$ (without condensation)
- for DIN symmetrical rail mounting EN 50022-35 x 7.5
- Dimensions: see dimensional drawing

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right.$)
*) see application example for insulated wire bridge

Dimensions SVS02-04, fitted with ESS20-003

[^28]

居ETFA゚ Power Distribution System SVS02

Accessories

Insulated wire bridge

Y 30388108
Two insulated wire bridges are supplied with the power distribution system. They may be used for:

- Channel X31: internal +DC 24 V supply for signalisation wire bridge from (+) to (SC)
Signal circuit (+) to (SC) protected by CB2
Signal circuit (SC) to (SO) protected by CB1
- Channel X1: Protected load output ($\mathrm{L}+\mathrm{L}$) of CBE position F1 takes over protection of ($\mathrm{L}+\mathrm{S}$) terminals of all CBEs F2 up to Fn ($\mathrm{n}=04,08,12,16$)

Jumper

X 22206601

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right.$)
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications withou notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Application example for insulated wire bridge

Application example for jumper to replace ESS20-003

The signalling pathway of the group signalisation is as follows:

- feed-in of +DC 24 V potential in (SC = terminal 31.2)
- via in-built overcurrent protection CB1
- via all signal contacts of the fitted circuit breakers type ESS20-003
- back to signal output of group signalisation ($\mathrm{S} 0=$ terminal 31.3)

In operating condition (i.e. all circuit breakers plugged in and functional) the signalling pathway (SC) to (S0) is closed.

If the distribution rail is not completely fitted with ESS20-003, the open pathway (SC) to (S0) may be closed by means of a jumper type X 22206601.

居E-APower Distribution System SVS04

Description

The SVS04 power distribution system for symmetrical DIN rail mounting is designed to distribute power from a switch-mode power supply to 4 or 8 channels. Selective protection of the load output circuits is provided by the plug-in type circuit breakers installed. With a max. load current of 8A per channel and a max. total current of 40A the SVSO4 provides ease of wiring in short circuit current limited DC24V applications. Five protected "L+" load outputs per way and 15 or 30 minus terminals significantly reduce wiring time enormously.

Electronic circuit breaker ESS20-003, electronic circuit protector ESX10-103, thermal-magnetic circuit breakers 2210-S21. and 3600 are all suitable for use with the SVS04, plugging directly into the sockets provided for each of the 4 or 8 outputs.

Ordering information

Type

SVS04 power distribution system for types ESS20-003, ESX10-103,
2210-S21., 3600

- for short circuit current limited DC 24 V applications
- max. 40 A continuous load
- one integral circuit breaker (CB1): overcurrent protection of group signalisation, red LED flashes upon trip of CB1
- including 1 insulated wire bridge Y 30388108
- accessories: jumper X 22206601 for unused ways, please order separately

Technical data

DC24 V supply

DC 24 V terminals, 2×3 terminals
(screwless terminals max. $10 \mathrm{~mm}^{2}$), for current supply

- DC $24 \mathrm{~V}(+)=(\mathrm{X} 21)+/+/+$
- DC 24 V (-) = (X21) -/-/-

Integral loop-through, for wiring and additional connection of an external buffer module.

F positions

Number of ways for circuit breakers, suitable
for types ESS20-003, ESX10-103, 2210-S21., 3600
SVS04-04... F1...F4 = terminals X1...X4
SVS04-08... F1...F8 = terminals X1...X8
Plug jumper X 22206601 into unused ways
(please order separately, see accessories)

Load outputs

$5 \times$ L+ protected per position F1...F4 (F1...F8), led
through terminals X1...X4 (X1...X8), max. $2.5 \mathrm{~mm}^{2}$ load current max. 8 A per position

Signalisation

signalisation terminal X31, 5-pole, max. $2.5 \mathrm{~mm}^{2}$
+: DC 24 V feed from terminal X21, protected by integral circuit breaker CB1
total current max. 0.5 A group signalisation:
S: line feed DC 24 V , insert insulated wire bridge Y 30388108 (bulk shipped) between + and GR
AS: output of group signalisation two-group signalisation
GR: line feed, insert insulated wire bridge Y 30388108 (bulk shipped) between + and GR
AS: output group A (X5...X8)
B: output group B (X1...X4)

Minus terminals

3×5 terminals (X22, X23, X24) or
6×5 terminals (X22, X23, X24, X25, X26, X27): version K01
Termination
For signalisation, load outputs and minus terminals:
B10: screwless spring-loaded terminals max. $2.5 \mathrm{~mm}^{2}$, with integral test socket
B20: plug-in type screw terminals max $2.5 \mathrm{~mm}^{2}$, with integral test socket
C10: pcb terminal/spring-loaded terminal max.
$2.5 \mathrm{~mm}^{2}$, with integral test socket

General data

- protection class to DIN 40050: IP20
- insulation co-ordination to IEC 60934: 0.5 kV
- pollution degree 2
- dielectric strength AC 500 V
- temperature range: $0 \ldots 50^{\circ} \mathrm{C}$ (without condensation)
- for symmetrical DIN rail mounting EN50022-35 x 7.5
- dimensions: see dimensional drawings

Signal path of group signalisation from F1 to F4

X 31
AS signalisation terminal
AS signal output group signal
$\stackrel{+}{\text { S }} \quad+$ DC 24 V from terminal 21 , internally prewired and protected by CB1
SC / SO
line feed group signalisation with insulation bridge*
auxiliary contact ESS20-003, make contact

Wiring example: SVS04-08... with ESS20-003 and group signalisation

Signal path of group signalisation from F1 to F8

X 31
signalisation terminal
AS signal output group signal
$+\quad+\mathrm{DC} 24 \mathrm{~V}$ from terminal 21 , internally prewired and protected by CB1
S line feed group signalisation with insulation bridge*
SC / SO
auxiliary contact ESS20-003, make contact

居ETFA Power Distribution System SVS04

Wiring example: SVS04-04... with ESS20-003 and two-group signalisation

Signal path of two-group signalisation
 from F1 to F2 = group B, from F3 to F4 = group A

[^29]
Wiring example: SVS04-08... with ESS20-003 and two-group signalisation

Signal path of two-group signalisation from F1 to F4 = group B, from F5 to F8 = group A

Schematic diagram SVS04-04-... (fitted with ESS20-003)

DC $24 \mathrm{~V} /$ max. 40 A

気ERAPower Distribution System SVS04

Dimensions SVS04-04-..., fitted with ESS20-003

Dimensions SVS04-08-... (with 15 minus terminals)

Dimensions SVS04-08... K01 (with 30 minus terminals)

Schematic diagram SVS04-08... K01 (fitted with ESS20-003)

Accessories

Insulated wire bridge

Y 30388108
2 pcs of the insulated wire bridge are supplied with the power distribution system. The insulated wire bridges may be used for:

- terminal X31: internal DC 24 V feed for
group signalisation wire bridge from (+) to (S) signal path protected by CB1
- terminal X31: internal DC 24 V feed for two-group signalisation wire bridge from (+) to (GR) signal path protected by CB1

Jumper (for unused slots)
X 22206601

Application example for insulated wire bridge

Application example for jumper to replace ESS20-003

The signalling pathway of the group signalisation is as follows:

- feed-in of +DC 24 V potential in X31 (»+« terminal)
via in-built overcurrent protection CB1
- via all signal contacts of the fitted circuit breakers type ESS20-003
- back to signal output of group signalisation X31 (»AS«)

In operating condition (i.e. all circuit breakers plugged in and functional) the signalling pathway X31 from »+« to »AS« is closed.

If the distribution rail is not completely fitted with ESS20-003, the open pathway »+« to "AS« may be closed by means of a jumper type X 22206601.

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

RERA․ Power distribution system SVS09

Description

The SVS09 power distribution system with integral signalling module optimises DC 24 V distribution at the machine-oriented field level in automated process control, production plants and power plants. Offering 10-plug-in sockets for electronic and thermal-magnetic circuit breakers and an integrated alarm handling function for single and group signalisation, the SVS09 distribution board can be cascaded on the master-slave principle to meet specific requirements. This cascading allows transducers, actuators, valves, distributed PLCs, intelligent terminals etc. to be clustered into distinct function groups and to be conveniently incorporated into the plant's overall alarm monitoring scheme. Particularly for applications with a great number of sensors/ actuators, the SVS09 offers possibilities for cost- and space-saving in the design of control cabinets.

Each load circuit that is interrupted by an overload or short circuit trip always generates a single alarm. In addition, a group alarm for the entire SVS09 cascade is induced which will be acknowledged by means of a command element (momentary switch, relay, PLC) either locally in the control cabinet or remotely in the control room. Acknowledging the group alarm immediately reactivates the group signalling function of the SVS09 cascade remobilising it for new incoming short-circuit or overload messages.

The power distribution system SVS09 is mounted on a symmetrical rail and accommodates 10 electronic or thermal-magnetic circuit breakers. All terminals (line entry DC +24 V, GND (-) for self-supply, load outputs $\mathrm{L}(+)$, signalling and acknowledgment) are spring-loaded terminals.

Suitable for the following E-T-A circuit breaker types:
electronic circuit breaker electronic circuit protector thermal-magnetic circuit breakers

ESS20-003..
ESX10-103.
2210-S211 (also with intermediate position)
3600-P10, 3900-P10

Features and benefits

- integral distribution, protection and signalling functions
- power distribution and selective protection of DC 24 V load circuits form one source
- single signalling with manual reset on the protective device
- group signalling and acknowledgement by means of momentary switch/signal (local/remote)
- ease of signalling integration into signal concept of the entire system
- cascading of several SVS09 systems on the master-slave principle
- ease of configuration with wire bridges on the master SVS09

Ordering information

Type No.

SVS09 power distribution system for ESS20-003, ESX10-103,
2210-S211, 3600-P10, 3900-P10

Accessory: signalling module SIGMO-09-1xx, see Accessories

Technical data ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Application

modular power distribution system for short circuit limited DC 24 V applications

Line entry

rated voltage DC 24 V (19... 28 V)
residual ripple 5 \% max.
total current max. 30 A
DC $24 \mathrm{~V}(+)=\mathrm{X} 21: 1+$, X21:2+
GND (-) = X 22:4-, X22:3- (for self-supply of
circuit breakers)

F positions

10 ways for circuit breakers, suitable for types ESS20-003,
ESX10-103, 2210-S211, 3600-P10, 3900-P10
SVS09-10 / 10-way / F1...F10 load output /way
terminal block X24

Load outputs per position

rated voltage: DC 24 V (19... 28 V)
current: max. $4 A^{1)}$
number: 1 protected load output $L(+)$ via circuit breaker (Fx)

Single signalisation ${ }^{2)}$

$10 \times$ single signalisation for $10 \times F(x)$
terminal block X23, contacts 30-40, 31-41, 32-42, ...
potential-free make contacts (N/O)
error indication: contact open
OK indication: contact closed
Empty way: contact closed
reset: manually on plugged-in circuit breaker
Group signalisation ${ }^{2)}$
$1 \times$ group signalisation pro SVS09-cascade (1 master + 5 slaves) terminal block master X22, contact 13-23,
potential-free contact
error indication: contact closed
OK indication: contact open
configuration as Local/Remote-group signal
Acknowledgment of group signalisation ${ }^{1)}$
1 x acknowledgment instruction per SVS09-cascade (1 master

+ 5 slaves) acknowledgment only on the master
terminal block master X22, contact 10-11,
terminal potential-free break contact (N/C) or bridge
with bridge: master, acknowledgment locally, momentary switch on SVS09 (module SIGMO)
break contact N/C: master, acknowledgment locally and remote (momentary switch, relay, external PLC)

[^30]
Technical data ($\left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Configuration master/slave and group signal ${ }^{1)}$

configuration of master/slave functions of a SVS09-cascade on the master SVS09 via bridges3) on terminal block X22
X22: 20-21 master/slave-marking:
with bridge = master
without bridge = slave

X22: 13-23 group signal locally/remote
pre-adjustment = only locally, LED on master-SVS09 terminal of external indication element = locally and remote
X22: 10-11
acknowledgment of group signal locally/remote with bridge = master, acknowledgment locally with break contact = master, acknowledgment
locally and remote
= slave, no acknowledgment

Cascading several SVS09 systems

cascading possible with $1 \times$ master M and max. 5 slaves S 1 ... S 5
Loop through the following 4 lines:
$24 \mathrm{~V}(+)$ supply voltage
M-X21:2+ \rightarrow S1-X21:1+ \rightarrow S1-X21:2+ \rightarrow S2-X21:1+...
GND (-) self-supply circuit breaker/signalisation
M-X22:3- \rightarrow S1-X22:4- \rightarrow S1-X22:3- \rightarrow S2-X22:4-...
S (+) group signalisation (+)
M-X22:12 \rightarrow S1-X22:11 \rightarrow S1-X22:12 \rightarrow S2-X22:11...
S (-) group signalisation (-)
M-X22:22 \rightarrow S1-X22:21 \rightarrow S1-X22:22 \rightarrow S2-X22:21...

Termination

C10 pcb spring-loaded terminals (standard)
line entry DC 24 V on terminal block X21
line (+) terminals 1+ und 2+,
connection capability (cable cross section)
with and without wire end ferrule $0.25-10 \mathrm{~mm}^{2}$ stripped length

12 mm
configuration, GND (-) (self-supply) and group signal on terminal block X22
$5 x$ double level terminal block
single signalisation on terminal block X23
10x double level terminal block
load outputs on terminal block X24
$5 x$ double level terminal block
connection capability (cable cross section)
with and without wire end ferrule $0.25-1.5 \mathrm{~mm}^{2}$ stripped length 7 mm
plug-in type signalisation module SIGMO-09-1xx 50-pole Card Edge socket board
C20 pcb screw terminals (option)
General data

- Mounting: symmetrical rail to EN 50022-35 x 7.5
- Temperature range: $0 . .50^{\circ} \mathrm{C}$ (without condensation)
- Storage temperature: $-20 . . .+70^{\circ}$
- Housing material: plastic
- Protection class terminals

IP20 DIN 40050
pcb IP00 DIN 40050 (double-lacquered)

- Insulation voltage: DC 250 V (pcb)
- Dimensions: see drawings

2) The plug-in type signalisation module SIGMO-09-1xx is required for failure signalisation and for the cascading functions on the master/slave principle. See accessories.
3) The SVS09 power distribution system is supplied without wire bridges and can thus be integrated into existing SVS09 cascade as a slave unit without further configuration. The user inserts wire bridges on terminal block X22 of the master.

Reference notes:

- The power distribution system must be installed by qualified personnel only.
- Only after expert installation may the assembly be connected to a power supply.
- The assembly is only suitable for use at safety extra-low voltage (DC 24 V).
- Connection to higher or not reliably disconnected voltages may be hazardous or cause damage.
- The max. total current of the SVS09 system must not be exceeded
- In each load circuit the cable cross sections and the current rating of the protective device must be selected according to the rating of the connected load.
- The technical data of the circuit breakers used must be observed.
- According to "Machinery Directive 98/37/EG and EN 60204-1, Machine Safety" special precautions have to be taken in machinery (e. g. use of a safety PLC) to prevent inadvertent start-up of machinery parts. In the event of a failure (short circuit/overload) the load circuit will be disconnected by the circuit breaker.
- After tripping of the circuit breaker and before reset the cause of tripping (short circuit or overload) must be remedied.
- The international standards (e. g. DIN VDE 0100 for Germany) must be observed with respect to installation and selection of cables.

Mounting position

首E-TAO Power distribution system SVS09

Power distribution system with overcurrent protection and integral signalling logic

Configuration instruction

General information

- Application individually (1 SVS09-10 as master) or as cascade (1 master + max. 5 slaves)
- Any configuration with wire bridges will only be done on the master.
- The minimum configuration with a master and local signalisation and acknowledgment directly on the SVS09 power distribution system requires wiring of two bridges: X22:20-21 for master identification and X22:10-11 for group acknowledgment.
- Configuration of a cascade is always carried out only on the master with cascades consisting of several SVS09 mounted side-by-side. No adjustments are required on the slaves.
- Devices for status indication and acknowledgment for external signalisation must be connected only to the master. Should several external display elements be required (e. g. LED, acoustic signal), these must also be connected only to the corresponding signal outputs of the master.
- Unused slots do not have to be bridged, they have no influence on the signalisation of the installed circuit breakers. Unused slots forward to OK indication to the signalisation outputs.
- The SVS09 power distribution system invariably requires a pluggedin signalisation module SIGMO-09-xxx (on separate order).

Individual application

Minimal configuration: 1 master with local group signalisation and acknowledgment

step	configuration
1	mounting: mount SVS09 on the symmetrical rail
2	connect DC +24 V (+) supply: on terminal block DC $24 \mathrm{~V},+24 \mathrm{~V}$ to terminal 1+
3	connect GND (-) supply: ${ }^{\text {1) }}$ on terminal block X22, GND (-) to terminal 4-
4	master identification: bridge terminals 20-21 on terminal block X22
5	group signal locally: pre-adjustment. In the event of group failure the red LED is always lighted (only) on the master. acknowledgment manually with red momentary switch on SVS09 (module SIGMO)
6	single signalisation: connect single signalisation for F1 through F10 on terminal block X23, F1: terminals 30-40, F2: terminals 31-41, F3: terminals 32-42 ... F10: terminals 39-49 signal: potential-free contact: fault = contact open, OK = contact closed, empty way: contact closed
7	loads: on terminal block X24: connect loads to be protected to terminals 50 through 64
8	

1 master with local and external (remote) group signalisation and acknowledgment	
step	configuration
1	mounting: mount SVS09 on the symmetrical rail
2	DC +24 V (+) supply: on terminal block DC 24 V, connect +24 V to terminal 1+
3	GND (-) supply: 1) on terminal block X22, connect GND (-) to terminal 4-
4	master identification: bridge terminals 20-21 on terminal block X22
5	group signal locally and remote: on terminal block X22, connect to external display element to terminals 13-23 (e.g. LED, relay, acoustic signal). In addition the red LED is always lighted on the master with group signal signal: potential-free contact: fault = contact closed, OK = contact open
6	group acknowledgment locally or remote: on terminal block X22, connect a command element to the terminals 10-11, e.g. momentary switch, relay, PLC signal (potential-free break contact N/C)
7	single signalisation: on terminal block X23, connect single signalisation for F1 through F1 F1: terminals 30-40, F2: terminals 31-41, F3: terminals 32-42, ... F10: terminals 39-49 signal: potential-free contact: fault = contact open, OK = contact closed, empty way: contact closed
8	loads: on terminal block X24: connect loads to be protected to terminals 50 through 64
4	

1) GND (-) potential serves for self-supply of SVS09
(circuit breaker and SIGMO-module)

园官－TA゚ Power distribution system SVS09

Cascading： 1 master and several（n）slaves（max．5）

step	configuration
1	mounting：mount all SVS09 onto symmetrical rail
2	DC＋24 V（＋）supply：terminal block DC 24 V －on the master：connect $+24 \mathrm{~V}(+)$ to terminal $1+$ and lead through to terminal $2+$ for slave 1 －on slave 1：connect $+24 \mathrm{~V}(+)$ of master to terminal $1++$ lead through to terminal $2+$ for slave 2 －on slave n ：connect $+24 \mathrm{~V}(+)$ of slave $(\mathrm{n}-1)$ ）to terminal $1+$ －additional slaves：always lead through $+24 \mathrm{~V}(+)$ of terminal $2+$ for next slave，terminal $1+$
3	GND（－）supply：${ }^{1)}$ terminal block X22 －on the master：connect GND（－）to terminal 4－and lead through at terminal 3 －for slave 1 －on slave 1： connect GND（－）of master to terminal 4－and lead through at terminal 3 －for slave 2 －on slave n： connect GND $(-)$ of slave $(\mathrm{n}-1)$ to terminal 4－ －additional slaves：always lead through GND（－）of terminal 3－for next slave，terminal 4－
4	master identification：bridge terminals 20－21 on the SVS09－master，on terminal block X22 Note：no adjustments on the slaves required！
5	group signal locally：pre－adjustment．In the event of group fault the red LED is always lighted（only）on the master．
6	group acknowledgment locally：bridge terminals 10－11 on SVS09－master，terminal block X22 acknowledgment manually with red momentary switch on SVS09－master（module SIGMO） Note：no adjustments on the slaves required！
7	single signalisation：on terminal block X23，connect single signalisation for F1 through F10 F1：terminals 30－40，F2：terminals 31－41，F3：terminals 32－42，．．．F10：terminals 39－49 signal：potential－free contact：fault＝contact open，OK＝contact closed，empty way：contact closed
8	loads：on terminal block X24：connect loads to be protected to terminals 50 through 64

1 master＋ n slaves：with local and external（remote）group signalisation and acknowledgment

step	configuration
1	mounting：mount all SVS09 onto the symmetrical rail
2	DC＋24 V（＋）supply：terminal block DC 24 V －on the master：connect $+24 \mathrm{~V}(+)$ to terminal $1+$ and lead through terminal $2+$ for slave 1 －on slave 1：\quad connect $+24 \mathrm{~V}(+)$ of master to terminal $1+$ and lead through terminal $2+$ for slave 2 －on slave n ：\quad connect $+24 \mathrm{~V}(+)$ of slave $(\mathrm{n}-1)$ to terminal 1 －additional slaves：always lead through $+24 \mathrm{~V}(+)$ of terminal $2+$ for next slave，terminal $1+$
3	GND（－）supply：${ }^{1)}$ terminal block X22 －on the master：connect GND（－）to terminal 4－and lead through at terminal 3 －for slave 1 －on slave 1： connect GND（－）of master to terminal 4－and lead through at terminal 3 －for slave 2 －on slave n： connect GND $(-)$ of slave $(\mathrm{n}-1)$ to terminal 4－ －additional slaves：always lead through GND（－）of terminal 3－for next slave，terminal 4－
4	master identification：bridge terminals 20－21 on the SVS09－master，on terminal block X22 Note：no adjustments on the slaves required！
5	group signal locally and remote：connect an external display element（e．g．LED，relay，acoustic signal）on master，terminal block X22，to terminals 13－23．In addition the red LED is always lighted in the event of group signal． signal：potential－free contact：fault＝contact closed， $\mathrm{OK}=$ contact open Note：no adjustments on the slaves required，group acknowledgment is valid for the entire cascade．
6	group acknowledgment locally or remote：connect a command element on master，terminal block X22，to terminals 10－ 11，e．g．momentary switch，relay，PLC signal（potential－free break contact N／C） Note：no adjustments on the slaves required，group acknowledgment is valid for the entire cascade．
7	single signalisation：on terminal block X23，connect single signalisation for F1 through F10 F1：terminals 30－40，F2：terminals 31－41，F3：terminals 32－42，．．．F10：terminals 39－49 signal：potential－free contact：fault＝contact open，OK＝contact closed，empty way：contact closed
8	loads：on terminal block X24：connect loads to be protected to terminals 50 through 64

1）GND（－）potential serves for self－supply of the SVS09 （circuit breaker and SIGMO module）

Schematic diagram

Dimensions SVS09－10－C10

Plug-on module (circuit breaker / signalisation module SIGMO-09-1xx) to be ordered separately

Application example: SVS09 cascade with 1 master and 1 slave

SVS09-10-C10 master fitted with $10 \times$ ESS20-003
SVS09-10-C10 slave fitted with $5 \times 2210-$ S2 and 5×3600

Technical data $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\right)$

Voltage supply

rated voltage
DC 24 V（19．．． 28 V）
residual ripple 5 \％max．
supply via SVS09

Current load

normal operation without trip： 0 mA
max． 150 mA with 10－way fault on SVS09（all relays loaded）

Contacts
 $\min .10 \mathrm{~V} / 10 \mathrm{~mA}$
 max． $28 \mathrm{~V} / 200 \mathrm{~mA}$ ．

Status indication and actuation
LED red：lighted in the event of group fault momentary switch red：for local acknowledgment of group signalisation
remote acknowledgment：terminal of an external command （momentary switch，relay，PLC signal） rupture capacity $28 \mathrm{~V} / 20 \mathrm{~mA}$ integral free－wheeling diode in SIGMO module

Reverse polarity protection

Protected against reverse polarity of potentials DC $24 \mathrm{~V}(+)$ and GND（－）on the SVS09．No function if connected reversely

Application

Plug－in type signalisation module for the power distribution system SVS09 for group signalisation and acknowledgment for an isolated SVS09 application or a cascade．The SIGMO module ensures a group fault to be indicated after each trip of a circuit breaker on the SVS09．Fault indication can be－depending on the configuration ${ }^{1)}$－locally on the power distribution system（red LED）or locally and externally（remotely）， e．g．by means of an acoustic signal in the control room．Acknowledgment of the group signal can also be only locally via a momentary switch on the power distribution system，or locally and remotely，e．g．via a momentary switch in the control room．Acknowledgment of the group signal re－ activates the group signalisation，so that it is released again and ready for new error messages．The single signalisation and the tripped circuit breaker will be manually reset by actuating the push button of the circuit after remedy of the failure．

Note：Proper function of the signalisation module SIGMO－09－1xx is ensured only in connection with the power distribution system SVS09－10－Cxx．

1）see power distribution system SVS09，basic schematic diagram and configuration instruction

Ordering information

Type No．

SIGMO signalisation module for SVS09 power distribution system
－plug－in type signalisation module
－DC 24 V－applications
－supply via SVS09
Version for power distribution system
09 SVS09－10 for circuit breakers（F1．．．F10）
Pcb version
100 standard：plug－in type signalisation module for
circuit breaker（F1．．．F10）
pcb populated，open，
120 option：plug－in type signalisation module for
circuit breaker（F1．．．F10）
pcb populated，encapsulated
SIGMO－09－100 ordering example

All dimensions without tolerances are for reference only．In the interest of improved design， performance and cost effectiveness the right to make changes in these specifications without notice is reserved．Product markings may not be exactly as the ordering codes．Errors and

ER-PA Power-D-Box with sockets

Description

Power-D-Box 19" power distribution system fitted with E-T-A sockets 63-P10-Si to accommodate thermal-magnetic circuit breakers with each terminal block accepting up to 6 circuit breakers. Other rack types upon request.

Typical applications

Circuit breakers that may be accommodated on Power-D-Box 19" racks fitted with E-T-A sockets $63-\mathrm{P} 10-\mathrm{Si}$:
type 2210
type 3600
type 3900
type E-1048-60.
see section 2 - thermal-magnetic overcurrent CBs see section 2 - thermal-magnetic overcurrent CBs see section 2 - thermal-magnetic overcurrent CBs see section 6 - SSRPCs

Ordering information

X 21153001 for 5 E-T-A terminal blocks 63-P10-Si

Technical data

X211530 01	2 U
Material:	The Power-D-Box 19" power distribution system and the mounting flanges are made of 2 mm thick steel sheet.
Colour:	RAL 7032, grey

Connection

By means of one or two 4-pole female multi-pin connectors for max. $4 \mathrm{~mm}^{2}$ cables, which may be connected either on the right or left side of the rack.

Dimensions

X 21153001

19" rack Power-D-Box with 5 E-T-A sockets 63-P10-Si

Accessories

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$ (AWG 16), brown (up to 13 A max. load) X 210588 02/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), black (up to 20 A max. load) X $21058803 / 2.5 \mathrm{~mm}^{2}$ (AWG 14), red (up to 20 A max. load) X 210588 04/ $2.5 \mathrm{~mm}^{2}$ (AWG 14), blue (up to 20 A max. load)

Busbar 50 A for socket 63-P10-Si

X 22176011

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

The compact 19" Power-D-Box features aluminium profiled cross members with an anodised front plate. The panel cutout accommodates up to 30 positions numbered 1 to 30 . Blanks cover unused positions, with $6,12,24$ or 30 being "open".

The rack can be fitted with plug-in type circuit breakers 3600/3900 and 2210, electronic circuit breakers ESS20 or electronic circuit protector ESX10 or E-T-A Solid State Remote Power Controllers (SSRPC) E-1048-600/700. Please specify the correct option according to the ordering information shown, as different depths as well as different heights of the front cut-out must be allowed for.
The devices are plugged into sockets 63-P10-Si (6 positions each). These sockets (S1...S5) are provided with 6.3 mm blade terminals on the rear.

Four busbars (X1...X4) with 6 (signalisation) or 15 (feed) positions each (6.3 mm blade terminals) provide easy terminal connection.

Prewired options available ex factory are:

- Parallel connected feed ($2.5 \mathrm{~mm}^{2}$) with separate supply for each socket via busbars X1 and X2.
Choice of wiring colours: black, red, blue, grey. Outputs are not connected.
- Parallel connected auxiliary contacts (N/C) grouped per socket, $1 \mathrm{~mm}^{2}$, via busbars X3 (supply) and X4 (signalisation). Choice of wiring colours: black, red, blue, grey.
- Series connected auxiliary contacts (N/O) of all positions with $1 \mathrm{~mm}^{2}$, via busbars X3 (feed) and X4 (signalisation). Choice of wiring colours: black, red, blue, grey.
- Custom designed connection according to specification.

Other fittings, e.g. back-up fuse, separate circuits or redundancy, multipole circuits, screw terminals, custom designed markings etc., are available to special order (please enquire).

A compact printed circuit board with rear screw terminals is available as an alternative to the standard cable wiring (see pages 7-45 to 7-51).

Technical data

19" Power-D-Box	length: 84 modules (426.72 mm) height: $2 \mathrm{U}(88.90 \mathrm{~mm})$ depth: 205... 295 mm (depending on the selected version) material: aluminium, anodized
Front cutout for 30 positions, numbered 1 through 30	$\begin{aligned} & 1 \text { socket }=6 \text { positions (No. } 1-6) \\ & 2 \text { sockets }=12 \text { positions (No. } 1-12) \\ & 3 \text { sockets }=18 \text { positions (No. } 1-18) \\ & 4 \text { sockets }=24 \text { positions (No. } 1-24) \\ & 5 \text { sockets }=30 \text { positions (No. } 1-30) \\ & \text { blanks cover unused sockets. } \end{aligned}$
Mounting socket	polarised E-T-A mounting socket type 63-P10-Si (6 positions) rear blade terminals 6.3 mm max. load: 16 A continuous
Busbars Feed (X1, X2)	15-way for 6.3 mm blade terminals max. current rating: 63 A
Busbars Auxiliary contacts (X3, X4)	6 -way for 6.3 mm blade terminals max. current rating: 32 A
Feed	busbar 50 A per socket (= 6 positions) HO7Z-K cables $2.5 \mathrm{~mm}^{2}$ with fully insulated 6.3 mm blade terminals to VBG 4 one cable per socket max. current rating: 20 A
Auxiliary contact wiring	HO7Z-K cables $1 \mathrm{~mm}^{2}$ with fully insulated 6.3 mm blade terminals to VBG 4 max. current rating: 4 A
Wire colour option	black, red, blue or grey
Voltage rating	AC 250 V/DC 65 V
Housing ground/earth	on the inside via M6 screw by means of ring cable lug (two with redundant systems)

Ordering information
Type No.
19BGT 19" Power-D-Box with sockets pre-wired

Dimensions

Internal connection diagrams

Termination

19BGT-2-2210/3600-30A0-B1
pre-wiring of signalisation,
group signalisation - series connection
line terminal X2215030
10... 16 (25) mm^{2},

19BGT-2-2210/3600-30A0-B2
pre-wiring of signalisation,
pre-wiring of signalisation,
group signalisation - parallel connection
line terminal X22150301 10... 16 (25) mm ${ }^{2}$,

19BGT-2-2210/3600-30A2-B0
pre-wiring of line feed,
line terminal X22150301
1-pole protected by return busbar
$25 \mathrm{~mm}^{2}$, plug-on type (optional)

19BGT-2-2210/3600-30A4-B0

circuit breaker types
2210-S21x.../3600.../3900 plug-in type (not included)
load terminals:
load terminals:
Pin $1(+/-)$, Pin $3(+/-)$, blade terminal 6.3 mm auxiliary contact terminals:
auxiliary contact terminals:
$11-12$ make contact, blade terminals 6.3 mm 11-12 make contact, blade
auxiliary contact terminals:
23-24 break contact, blade terminals 6.3 mm

19BGT-2-ESS20/ESX10-30A4-B0
pre-wiring of line feed,
1-pole protected
line terminal X2215030
10... 16 (25) mm^{2},

EE-TAO Power-D-Box with sockets pre-wired

Blanking piece for Power-D-Box

(types 3600/3900, 2210)
Y 30856301

Blanking piece for Power-D-Box (types ESS20/ESX10)
Y 30856341

Withdrawal tool for ESS20/ESX10 Y 30860201

with ESS20

Line Terminal (max. 63 A)
X 22150301
max. tightening torque 3.0 Nm

Caution: cables must not be connected with terminal plugged in

Jumper

to bypass looped through unused auxiliary contacts (series connection)

X 22206601

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

The compact 2U 19" Power-D-Box with sockets mounted on a pcb and pre-connected features aluminium profiled cross members with an anodised front plate. The panel cutout accommodates up to 30 positions numbered 1 to 30 . It is possible to have 6, 12, 18, 24 or 30 prepared slots or to have a redundant distribution with up to 2×15 positions.

The Power-D-Box accommodates plug-in type circuit breakers 3600/ 3900 and 2210, solid state remote power controller E-1048-700, electronic circuit breaker type ESS20 and electronic circuit protector ESX10. The required device must be specified in the ordering information as both different installation depth and pcb pin assignments must be allowed for.

The devices are plugged into corresponding sockets type 63-P10-Si (6 positions each), soldered onto the pcb and pre-connected.

The system is configured with redundancy as standard (2×15 positions), but the two groups may be interconnected so as to provide a non-redundant system if required. Line entry within each group is single pole or double pole.
With single pole line entry all slot numbers per group are combined and connected via an M6 terminal stud by means of a ring cable lug.
With double pole line entry, odd and even slot numbers are integrated into separate circuits each of which is connected via $10 \mathrm{~mm}^{2}$ screw terminals. This allows use of double pole circuit breakers.

Load outputs are connected by means of screw terminals up to $4 \mathrm{~mm}^{2}$ on the rear of the pcb.

The system offers a number of signalisation possibilities and separation for redundancy is also possible:

- series connection of make contacts (group signalisation via closed circuit current)
- parallel connection of break contacts (double sided for group signalisation via closed circuit current)
- parallel connection of break contacts (only one-sided, second side of break contacts will be connected individually with the terminals for single signalisation via closed or open-circuit current)

Termination is on the rear side by means of screw terminals up to $1.5 \mathrm{~mm}^{2}$ (group connection) and up to $1 \mathrm{~mm}^{2}$ (single signalisation) on the pcb. When using ESS20, ESX10 or E-1048-700, the required Gnd terminals as well as control and reset signals will also be connected via the terminals for group or single signalisation.

Upon request the group distribution (redundancy) can be cancelled by means of jumpers. Additional terminals on the rear side of the rack simplify connection. It is also possible to provide terminals for return lines from the individual loads so as to integrate the necessary external wiring into the rack.

Technical data	
19"Power-D-Box	length: 84 modules (426.72 mm) height: $2 \mathrm{U}(88.90 \mathrm{~mm})$ depth: 205... 295 mm depending on the version material: aluminium, partly anodized
Front cutout for 30 positions, numbered 1 through 30	$\begin{aligned} & 1 \text { socket }=6 \text { positions (no. } 1-6 \text {) } \\ & 2 \text { socket }=12 \text { positions (no. } 1-12 \text {) } \\ & 3 \text { sockets }=18 \text { positions (no. } 1-18 \text {) } \\ & 4 \text { sockets }=24 \text { positions (no. } 1-24) \\ & 5 \text { sockets }=30 \text { positions (no. } 1-30) \end{aligned}$
Mounting socket	polarised mounting socket type $63-\mathrm{P} 10-\mathrm{Si}$ (6 positions) , soldered onto the pcb from the rear with wiring Contact load: 16 A continuously
Line entry X0 Single pole	2 groups, single pole each (= 2 separate circuits) 2×100 A max. via terminal stud M6 for ring cable lug
Supply feed X0 Double pole	2 groups, double pole each (= 4 separate circuits) 4×40 A max. via screw terminal up to $10 \mathrm{~mm}^{2}$ (max. $4 \times 50 \mathrm{~A}$ at max. $40^{\circ} \mathrm{C}$ ambient temperature)
Load outputs X1	30 channels 16 A max. per pole via screw terminals up to $4 \mathrm{~mm}^{2}$
Signalisation group signalisation X2	series connection of make contacts / parallel connection of break contacts (double sided) in 2 groups (interconnectable by means of wire bridges) max. 1 A total current via screw terminal up to $1.5 \mathrm{~mm}^{2}$ max. 0.5 A single current via screw terminal up to $1 \mathrm{~mm}^{2}$
Rated voltage	AC 250 V ; DC 65 V
Housing ground/earth	on the inside via M6 screw by means of ring cable lug (two with redundant systems)
Ambient temperature ra	$0 . . .50{ }^{\circ} \mathrm{C}$

Ordering Information

Type number
19BGT 19" Power-D-Box with sockets pre-wired on pcb
|lll$\frac{\text { Height }}{22 \mathrm{U}=88.90 \mathrm{~mm}}$

Device prepared for accommodation
3600 circuit breaker type 3600 or 3900
2210 circuit breaker type 2210-S
1048 solid state remote power controller E-1048-700
ESS20 electronic circuit breaker type ESS20
ESX10 electronic circuit breaker type ESX10
Number of positions
066 poles
1212 poles
1818 poles
2424 poles
3030 poles
Additional wiring and terminals for line feed
A0 without (only pcb with terminals)
R0 none (only pcb with terminals, redundant)
A2 line feed pre-wired 1-pole
(all positions = 1 circuit)
R2 line entry pre-wired single pole redundant
A3 line feed pre-wired 1-pole
(as A2 + return busbar)
R3 line feed pre-wired 1-pole + return busbar, redundant
A4 line feed pre-wired 2-pole connected
(all positions $=2$ circuits)
R4 line feed pre-wired 2-pole connected, redundant
Colour for additional wiring, line feed
(not with AO + R0)
single pole wiring
SW black
RT red
BL blue
multipole wiring
RB 1st pole red, 2nd pole blue
SB 1st pole black, 2nd blue
Auxiliary contact function
B1 auxiliary contacts connected in series (group signalisation)
B2 auxiliary contacts connected in paralle (group signalisation)
B3 auxiliary contacts connected in paralle (single signalisation)
B5 as B1, with additional wiring ($1 \mathrm{~mm}^{2}$) to terminal (not with AO)
B6 as B2, with additional wiring ($1 \mathrm{~mm}^{2}$)
to terminal (not with A0)
Colour of additional wiring of auxiliary contacts
GR grey (only with B5 or B6)
L with printed circuit board
(pcb)
S... suffix number for customer specific version

19BGT-2-2210-24 A2 - B1 -
ordering example

居ETFA゚ Power-D-Box with pcb-mounted sockets

Dimensions

Pin assignment bus pcb (terminal side)

Bus pcb (single pole version)

group signalisation (B1, B2, B5, B6) jumper to cancel redundancy

Bus pcb (single pole version)

居ETFA゚ Power-D-Box with pcb-mounted sockets

Dimensions

Bus pcb (signalisation B1, B2, B5, B6)

Bus pcb (signalisation B3)

Accessories

Blanking piece for Power-D-Box
(types 3600/3900, 2210)
Y 30856301

Blanking piece for Power-D-Box (types ESS20/ESX10)
Y 30856341

Withdrawal tool for ESS20/ESX10 Y 30860201

Jumper
to bypass looped through unused auxiliary contacts (series connection)
X 22206601

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\text { inch }}$)
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

層ETAOModular Power-D-Box

Description

The Power-D-Box is a compact 2 U power distribution system made of aluminium.

The 19BGT-2-X is a compact 19" 2 U power distribution rack incorporating E-T-A plug-in circuit breakers type 2210-S291 (for 19BGT-2-X2210-...), 8340-F (for 19BGT-2-X83S2/..S4/..Z4-...) or 8345-.01.-W0 (for 19BGT-2-X8345-...). These are installed in prewired E-T-A power distribution rails type X2210-S, X8340-S02, X8340-S04, X8340-SZ4 or X8345-D01. Options available include separate circuits, redundant circuits and customer-specific marking.

Ordering information

Power-D-Box / High-Power

Technical data

19" Power-D-Box	length: 426.72 mm height: $2 \mathrm{U}(88.90 \mathrm{~mm})$ material: aluminium
Voltage rating	AC 230 V; DC 110 V; DC 80 V; DC 65 V
Details of power distribution systems:	
X2210-S...	pages 7-57 to 7-58
X8340-S02	pages 7-65 to 7-66
X8340-S04	pages 7-67 to 7-68
X8340-SZ4	pages 7-69 to 7-71
X8345-D01	pages 7-73 to 7-76

Dimensions 19BGT-2-X8345 (High-Power)

Dimensions 19BGT-2-X2210 (Economy)

Dimensions 19BGT-2-X83S2 (Economy)

Dimensions 19BGT-2-X8345 (High-Power)

Dimensions 19BGT-2-X83S4 / -X83Z4 (Economy)

居ETA゚ Modular Power-D-Box

Schematic diagram X2210-S (Economy)

Schematic diagram X8340-S02 (Economy)

Schematic diagram X8340-S04 (Economy)

Schematic diagram X8340-SZ4 (Economy)

ZETEAO Modular Power-D-Box

Schematic diagram X8345-D01 (High Power)

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted

Accessories

Load output terminal protected against reverse polarity (set: 4 moulded sleeves, 8 blade terminals $6.3 \times 0.8 \mathrm{~mm}$)
X 22284701 for cable cross section $0.7 \ldots 2.0 \mathrm{~mm}^{2}$
X 22262501 for cable cross section 2.5... $4.0 \mathrm{~mm}^{2}$
X 22284801 for cable cross section 4.0... $6.0 \mathrm{~mm}^{2}$

Blanking piece for Power-D-Box (circuit breaker types 8340, 8345) Y 30856311

Blanking piece for Power-D-Box
(circuit breaker types 8340, 8345-D01)
Y 30856321

FEFTAO Distribution rail X2210-S06...

Description

E-T-A rails distribute electrical power in telecommunications, automation, data and control systems. They have been designed to industry standard requirements and are suitable for mounting in ETSI control cabinets. These distribution rails are supplied with mounting bracket, cover, 6 blanks and withdrawal tool.
Live parts in terminal areas are protected against brush contact (VDE 106, part 100).

Typical applications

Telecommunications systems using ETSI racks; process control, measuring and control systems.

Ordering information

Type No.
X2210 Module for circuit breaker type 2210-S291-...

	Version
	S distribution rail
	Identification number
	066 positions
	Terminal block (intermediate element) (fitted)
	00 without
	011 x
	022 x
	033 x
	044 x
	055 x
	066 x
	Accessories (fitted)
	G without
	$\frac{\mathrm{H} \text { with mounting bracket }}{\mathrm{J} \text { with mounting bracket, cover and } 6 \text { blank }}$
	R without mounting bracket, with cover and 6 blanks
X2210 -	S 0606 J ordering example

Accessories

Terminal block	X 21101901
Withdrawal tool	$\times 21101801$

X2210-S06... for 6 circuit breakers 2210-S291..

Technical data

Circuit breakers to be fitted	2210-S291-P9M2-4100052210-S291-P9M2-410033	
Voltage rating	AC 250 V ; DC 65 V	
Load	max. 25 A per position max. 80 A for complete unit	
Signalisation (N/C contact)	AC 240 V / DC 65 V max. 1 A per position	
Insulation co-ordination (IEC 60664 and 60664A)	Rated impulse withstand voltage 2.5 kV	Pollution degree 2
Flame retardance (IEC 60695, part 2-2)	self-extinguishing	
Terminal design input output	clamp-type terminal clamp-type terminal	$\begin{aligned} & 2.5 \text { to } 25 \mathrm{mr} \\ & 0.5 \text { to } 2.5 \mathrm{~m} \end{aligned}$

Typical volume resistances in main circuit

input terminal $B+(N)$	
to output terminal $+(\mathrm{N})$	$<1.5 \times 10^{-3} \Omega$
input terminal B $-(\mathrm{U})$ to female contact $2(\mathrm{k})$	$<1.5 \times 10^{-3} \Omega$
input terminal B-Sig to female contact 12	$<2 \times 10^{-3} \Omega$
output terminal - (U) to female contact 1	$<1.5 \times 10^{-3} \Omega$
output terminal - \perp to female contact 11	$<2 \times 10^{-3} \Omega$
Mass X2210-S0606J	660 g

Internal connection diagram

Installation example

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Description

Thermal-magnetic circuit breaker mounted on Euro Card for 19" rack mounting, with one Euro Card accommodating one or two single pole, double pole or three pole circuit breakers. Convenient toggle actuation enables series 2210 additionally to be used as an ON/OFF switch. A red LED is located in the front frame of the Euro Card, indicating the switching status of the circuit breaker (via the auxiliary circuit).

Typical applications

Process control, measuring and control systems, telecommunications

Technical data

Circuit breaker							
Main circuit:							
voltage rating	$3 \mathrm{AC} 433 \mathrm{~V}(50 / 60 \mathrm{~Hz}) ;$						
	$\mathrm{AC} 250 \mathrm{~V}(50 / 60 \mathrm{~Hz}) ;$ DC 65 V						
current rating range	$0.1 \ldots 16 \mathrm{~A}$						
standard current ratings	0.1	0.2	0.3	0.4	0.5	0.6	0.8 A
	1	1.5	2	2.5	3	4	5 A

Auxiliary circuit:

voltage rating	AC 240 V ; DC 65 V
current rating	1 A
Other data	see type $2210-\mathrm{S} 2 .$.

Front plate
Dimensions
(1 module $=5.08 \mathrm{~mm}, 1 \mathrm{U}=44.45 \mathrm{~mm}$)
Width: one single pole circuit breaker 4 modules one double pole circuit breaker 6 modules one three pole circuit breaker 9 modules two single pole circuit breakers 4 modules two double pole circuit breakers 10 modules two three pole circuit breakers 12 modules

3 U

Height:	3 U
Material	aluminium, anodized

LED
Voltage rating
DC 24 V / DC 60 V

Ordering information

Type No

E2210

*) Clearly add the desired specifications.
${ }^{* *)}$ With mounting styles 6, 7 and 8: both circuit breakers must have the same characteristics
${ }^{* * *}$) It is possible to fit circuit breakers of mixed current ratings on the Euro Card.

One single pole circuit breaker

Two single pole circuit breakers

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

One double pole circuit breaker

Two double pole circuit breakers

One three-pole circuit breaker

Two three-pole circuit breakers

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Sockets for Euro Cards

Description

The following sockets may be used with single pole circuit breakers:

0Z041Z000004

24/7-pole mixed socket to DIN 41612 - form M.
Connection: 7-pole for $6.3 \times 0.8 \mathrm{~mm}$ connectors
and 24 -pole midi-wire wrap posts ($1 \times 1 \mathrm{~mm}$).

0Z041Z000007

24/7-pole mixed socket to DIN 41612 - form M. Connection: 7 -pole for $6.3 \times 0.8 \mathrm{~mm}$ connectors and 24 -pole for $2.8 \times 0.8 \mathrm{~mm}$ connectors.

0Z041Z000005

A 15-pole socket to DIN 41612 , form H, for $6.3 \times 0.8 \mathrm{~mm}$ connectors is required in addition to the socket mentioned above, if two double pole or two three pole circuit breakers are fitted on one Euro Card.

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes Errors and omissions excepted.

Dimensions of sockets for Euro Cards

OZ041Z000004

oz041Z000007

OZ041Z000005

Description

Thermal-magnetic circuit breaker mounted on Euro Card for 19" rack mounting, with one Euro Card accommodating up to three circuit breakers. Convenient toggle actuation enables series 2215 additionally to be used as an ON/OFF switch. A red LED is located in the front frame of the Euro Card, indicating the switching status of the circuit breaker (via the auxiliary circuit).

Typical applications

Process control, measuring and control systems, telecommunications

Ordering information for circuit breakers only

Technical data

Circuit Breaker

Main circuit: voltage rating	AC 250 V (50/60 Hz); DC 48 V					
current rating range	0.05... 10 A					
standard current ratings		0.2				0.6 A
	0.8	1	1.5	2	2.5	3 A
		5	6	8	10 A	
Auxiliary circuit: voltage rating	AC 250 V/DC 28 V					
current rating	1 A					
Other data	see type 2215					
Front plate						
Dimensions: width	4 modules (1 module $=5.08 \mathrm{~mm}$)					
height	$3 \cup(1 \cup=44.45 \mathrm{~mm})$					
Material	aluminium, anodized					

LED

Max. voltage rating DC 24 V

Select the circuit breakers to above ordering information. For further

It is possible to fit circuit breakers of mixed current ratings on the Euro Card.

Please add "Circuit breakers to be mounted on Euro Card" to the circuit breaker designation when ordering so that the applicable suffix number for the special version (E2215-...-L2..) can be determined .

19" racks may also be fitted with one or two circuit breakers by the customer, using industry standard components such as base plates, front plates with handle, sockets. Connection by means of blade terminals $6.3 \times 0.8 \mathrm{~mm}$.

Dimensions

Terminal selection

Internal connection diagrams

applicable to all circuit breakers GI to GIII

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

層ETA゚ Distribution rail X8340-S02

Description

Modular distribution rail, each module accommodating 2 magnetic or hydraulic-magnetic circuit breakers type 8340-F... and associated load terminals. Circuit breaker status indication (group signalisation) is via 2 busbars. Power supply is via right- or left-side terminal block. Live parts in the plug-in and supply feed terminal areas are protected against brush contact. Circuit breakers may be replaced with power on.

Typical applications

Telecommunications and cellular communication systems

Ordering information

Approvals

Authority	Voltage ratings	Current ratings
UL 1801	AC 250 V; DC 80 V	100 A

Technical data

For circuit breaker type	8340-F.10-P1..-H...
Voltage rating	AC 230 V ; DC 80 V
Load	25 A per position (30 A upon request) 132 A for complete unit
Signalisation (N/C)	6 A, AC 230 V 1 A, DC 80 V per position
Insulation co-ordination (IEC 60664 and 60664A)	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Flame retardance (IEC 60695, part 2-2)	self-extinguishing
Supply terminal design (terminal socket) load (module) signalisation (module)	recessed screw/pressure plate $6 . . .50 \mathrm{~mm}^{2}$, stranded feed-in $6 . . .35 \mathrm{~mm}^{2}$ with connector sleeve additional blade terminals 6.3×0.8 blade terminals 6.3×0.8 load output terminal protected against reverse polarity blade terminals 4.8×0.8
Mass terminal block power distribution module cover	$\begin{aligned} & 144 \mathrm{~g} \\ & 96 \mathrm{~g} \\ & 12 \mathrm{~g} \end{aligned}$

Internal connection diagrams

Load output terminal protected against reverse polarity
(set: 4 moulded sleeves, 8 blade terminals $6.3 \times 0.8 \mathrm{~mm}$)
X 22284701 for cable cross section $0.7 \ldots 2.0 \mathrm{~mm}^{2}$
X 22262501 for cable cross section 2.5... $4.0 \mathrm{~mm}^{2}$
X 22284801 for cable cross section $4.0 \ldots 6.0 \mathrm{~mm}^{2}$

Dimensions

Distribution rail，shown with power supply right－side X8340－S02R－．

Distribution rail，ground stud M6（optional）

Distribution rail，single signalisation

Distribution rail，shown with power supply left－side
X8340－S02L－．．．mounting screw

Internal connection diagram

Group signalisation

Single signalisation

${ }^{8340-\mathrm{F}}$

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only．In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved．Product markings may not be exactly as the ordering codes Errors and omissions excepted．

層ETA゚ Distribution rail X8340-S04

Description

Distribution rail for one or two modules suitable for ETSI control cabinet and similar applications. One module comprises 4 positions for magnetic or hydraulic-magnetic circuit breakers type 8340-F... and associated line and load terminals. Circuit breaker status indication (group signalisation) is via two busbars. The modular design facilitates the operation of a single distribution rail at two different voltages. Live parts in the plug-in and supply feed terminal areas are protected against brush contact.
Expansion or circuit breaker replacement is possible with power on.

Typical applications

Telecommunications, measuring and control systems

Ordering information

Type No.

X8340	Distribution rail for circuit breaker type 8340-F
	Version
	S rail
	Identification number
	04 modular, for 4 circuit breakers
	Modules with power supply
	11 module, 4-way
	22 modules, 4-way each
	Accessories
	0 without
	1 mounting bracket, 2 modules + mounting screw
	2 mounting bracket, 2 modules + cover + mounting screw
	3 cover
	4 mounting bracket, 1 module + cover + mounting screw
	5 cover + mounting screw
	6 mounting screw
	Signalisation
	0 without
	1 group signalisation + ground connection
	2 group signalisation
X8340-S 04 2 1-1 ordering example	

Technical data

For circuit breakers	8340-F.10-P1...-..H...	
Voltage rating	AC 230 V; DC 80 V	
Load	20 A per position	
	80 A for module	
Signalisation (N/C)	6 A, AC 230 V	
	1 A, DC 80 V	
	per position	
Insulation co-ordination	Rated impulse	Pollution
(IEC 60664 and 60664A)	withstand voltage	degree
	2.5 kV	2

Flame retardance
(IEC 60695, part 2-2) self-extinguishing

Supply terminal design recessed screw/pressure plate
feed $6 \ldots 25 \mathrm{~mm}^{2}$, stranded or
$6 . .16 \mathrm{~mm}^{2}$ with connector sleeve screw-less connectors $0.5 \ldots 2.5 \mathrm{~mm}^{2}$, stranded, with connector sleeve

Mass	
module	220 g
cover	35 g
bracket	145 g

Approvals

Authority	Voltage ratings	Current ratings
UL 1801	AC 250 V; DC 80 V	80 A

Dimensions

X8340-S0422 (right cover not represented)

View X *E-T-A circuit breaker type 8340-F... (not supplied with product)
recessed screw M5
tightening torque max. 4 Nm

4xneck screw (Philips) M2.5×11 (captive)
to DIN 41494 TL5

X8340-S0414

* E-T-A circuit breaker type 8340-F.. (not supplied with product)

Internal connection diagram

Module for 4 circuit breakers

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$
All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

Distribution rail with modules connected in series. One module provides 4 positions for magnetic or magnetic-hydraulic circuit breakers type 8340-F... and the pertinent line and load terminals on the front and rear side of the rail. Supply feed is either on the right or left side with copper busbars. Trip indication of the circuit breakers (group signalisation) is possible via two signal busbars.
Live parts in the plug-in area of the load terminals are protected against brush contact. Circuit breaker replacement is possible with power on.

Typical applications

Telecommunications, measuring and control systems

Ordering information

Type No.
X8340 Distribution rail for circuit breaker type 8340-F

Approvals

Authority	Voltage ratings	Current ratings
UL 1059	AC 250 V; DC 80 V	150 A

Technical data

Plug-in type circuit breakers	8340-F110-P1...-..H...
Voltage rating	AC 230 V ; DC 80 V
Load	25 A per position (30 A upon request) 150 A for the rail
Signalisation (N/C contact)	$\begin{aligned} & 6 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \\ & 1 \text { A, DC } 80 \mathrm{~V} \\ & \text { per position } \end{aligned}$
Insulation co-ordination (IEC 60664)	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Flame retardance (IEC 60695, part 2-2)	self-extinguishing
Terminal design supply feed	copper busbar $10 \times 3 \mathrm{~mm}$ with hole $\varnothing 5.3 \mathrm{~mm}$ dia. current supply from the rear side (left or right)
loads signalisation	blade terminals DIN 46244-A6.3x0.8mm load output terminal protected against reverse polarity on front and rear side blade terminals DIN 46244-A6.3x0.8mm plug-in direction as circuit breakers, opposite to the main terminal side
Mass	
module	200 g
every additional module	145 g

Distribution rail. Power supply left-side

View X

Distribution rail X8340-SZ4L1-0A1

Distribution rail. Power supply right-side

家ETA゚ Distribution rail X8340-SZ4

Internal connection diagram

Internal connection diagrams

Load output terminal protected against reverse polarity
(set: 4 moulded sleeves, 8 blade terminals $6.3 \times 0.8 \mathrm{~mm}$)
X 22284701 for cable cross section $0.7 \ldots 2.0 \mathrm{~mm}^{2}$
X 22262501 for cable cross section 2.5... $4.0 \mathrm{~mm}^{2}$
X 22284801 for cable cross section $4.0 \ldots . .6 .0 \mathrm{~mm}^{2}$

[^31]All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

曆ETA゚ Distribution rail X8345-D01

Description

Distribution rail comprising series connected circuit breaker mounting modules. Each module accommodates one magnetic or magnetichydraulic circuit breaker type 8345 and the associated line and load terminals on the rear side of the rail. Supply feed is either on the right or left side with copper busbars. Trip indication of the circuit breakers (group signalisation) is possible via two signal busbars.
Live parts in the plug-in area of the load terminals are protected against brush contact (IP20). Replacement of circuit breakers (switched off) is possible with power on.

Typical applications

Telecommunications, measuring and control systems

Ordering information

Type No.
X8345 Distribution rail for circuit breaker type 8345

Technical data

Plug-in type circuit breakers	8345-.01.-W0..-D.... and auxiliary contact module X8345-S01KW102-M
Voltage rating	DC 110 V other ratings upon request
Max. load	125 A per position (total 160 A for the two neighbouring positions when a breaker rated $>80 \mathrm{~A}$ is used), 600 A per complete module
Ambient temperature	$-30 . .+60{ }^{\circ} \mathrm{C}$
Signalisation (N/C contact)	DC 80 V 0.5 A per position
Insulation co-ordination (IEC 60664)	Rated impulse Pollution withstand voltage degree 2.5 kV 2
Flame retardance (IEC 60695, part 2-2)	self-extinguishing
Terminal design	
supply feed	copper bar 20x25 mm with M10 thread current supply from the rear side (left or right) (tightening torque max. 15 Nm)
load	screw terminals M6 (tightening torque max. 7 Nm) on rear side
signalisation	2 blade terminals DIN 46244-A6.3x0.8mm
Mass	

Approvals

Authority	Voltage ratings	Current ratings
UL 60950	AC 277 V; DC 110 V	600 A

Internal connection diagrams

EEFA゚ Distribution rail X8345-D01

Terminal design

Main circuit 01

left-side supply feed
right-side supply feed also available

Main circuit 03

Accessories

This is a metric design and millimeter dimensions take precedence（ (mm)
All dimensions without tolerances are for reference only．In the interest of improved design， performance and cost effectiveness the right to make changes in these specifications without notice is reserved．Product markings may not be exactly as the ordering codes． Errors and omissions excepted．

Description

The E-T-A Zero Current Monitor comprises a monitoring circuit with a current transformer and an opto decoupled output circuit with a triac (with AC output circuit) or transistor (with DC output circuit). The current transformer in the monitoring circuit does not only supply the input signal but also the very low power consumption of the Monitor. Zero current monitors are generally used to monitor circuits for wire breakage. The E-T-A Zero Current Monitor E-1076-SR may also be used to switch on an elapsed-hour meter. In this case the opto decoupled triac or transistor output will provide the control signal for the meter as soon as the load to be monitored is switched on.
The E-T-A Zero Current Monitor is supplied in a compact moulded housing with screw terminals for mounting on DIN EN 50022 and DIN EN 50035 rails.

Typical applications

- Wire break monitoring
- Control of elapsed-hour meters
- Life testing (e. g. lamps)
- Monitoring of heater elements (e. g. in furnaces)

Features

- No auxiliary voltage required
- Compact design
- Expandable by external current transformers
- operation of monitoring circuit > AC 250 V only via additional external current transformer

Ordering information

Type No.		
E-1076-SR	Zero Current Monitor	
	Monitorin	range
	AC 20 A	load current 0.2 to 20 A
		Output circuit
		AC 250 V AC 12... 250 V
		DC 60 V DC $2 . . .60 \mathrm{~V}$
E-1076-SR	- AC 20 A	AC 250 V ordering example

Technical data

Monitoring circuit	AC 20 A
Max. current rating	$\geq 500 \mathrm{~mA}(\mathrm{E}-1076-\mathrm{SR}-\mathrm{AC} 20 \mathrm{~A}-\mathrm{AC} 250 \mathrm{~V})$
Load current $I_{\text {min. }}$ red LED lights when I load is	$\geq 200 \mathrm{~mA}(\mathrm{E}-1076-\mathrm{SR}-\mathrm{AC} 20 \mathrm{~A}-\mathrm{DC} 60 \mathrm{~V})$
Zero current (wire break) red LED does not light when $I_{\text {load }}$ is	$<50 \mathrm{~mA}$
Load current $I_{\text {max. }}$ at $+25^{\circ} \mathrm{C}$ ambient temp. (derating)	20 A

Output circuit (conductive at $I_{\text {oad }}>I_{\text {min }}$)

Voltage rating U_{N}	AC $12 \ldots .250 \mathrm{~V}$	DC $2 \ldots . .60 \mathrm{~V}$
Output current $\mathrm{I}_{\text {Amax }}$	200 mA	50 mA
General data		
Insulation resistance	$10 \mathrm{M} \Omega$ at 500 V DC	
Dielectric strength	control circuit to output circuit: 1 kV	
Mounting	rail DIN EN 50022-35x7.5, or rail DIN EN 50035-G32	
Temperature range	$0 \ldots+60^{\circ} \mathrm{C}$	
Degree of protection:	IP20 housing DIN 40050 IP20 terminals DIN 40050	
Terminals	screw terminals	
Cable size	$1 \times 2.5 \mathrm{~mm}{ }^{2}$ each (AWG 14)	
Housing dimensions	$17 \times 63 \times 64 \mathrm{~mm}$ (width \times height \times depth)	

This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\text { inch }}\right)$

Connection diagrams

Output circuit AC 250 V

If no physical isolation is required, the monitoring circuit and the output circuit may be fed by the same power supply. The elapsedhour meter may be installed either before, or after, the triac.

Output circuit DC 60 V

(e.g. check-back signalling for PLC systems)

Check-back signalling may be tapped either before, or after, the transistor.

Description

The E-T-A Current Protector is designed to monitor the primary current of low-voltage transformers for halogen fittings.
After system installation, the admissible current range can be stored by operating the storage button. If the admissible range is exceeded (e. g. by overloads or short-circuit), the Protector will immediately disconnect the system. Underload (e. g. through defective terminal connections) will also cause system disconnection
Fault conditions are indicated by the integral LED. The system can be reconnected by turning the light switch on again once the cause of failure has been remedied.

Typical applications

- Low-voltage halogen lighting systems
- Can generally be used with sensor touch dimmers (please enquire)
- In sub-distribution
- Low-voltage transformers (no electronic transformers)

Features

- Eliminating fire hazard
- Storage of actual lamp load by push button
- LED fault indication
- Suitable for lighting systems with dimmers
- Passive relay for long use
- Mounting on symmetric rail
- Unaffected by inrush currents

Ordering information

Type No.

E-1078-4 Current Protector for low voltage lighting systems

| $\frac{\text { Version }}{2}$ with storage button, capacity up to 400 W |
| :--- | :--- |

with storage button, capacity up to 600 W
Housing
1 track-mountable housing
Voltage rating
$\overline{\text { AC } 230 \mathrm{~V}}$ voltage rating AC 230 V
Rated load
60-300 W lamp capacity 60... 300 W
100-400 W lamp capacity 100... 400 W
300-600 W lamp capacity 300... 600 W \square

Technical data

Protective function	short-circuit, overload, underload			
Lamp load	$60 \ldots 300 \mathrm{~W}$			
	$100 \ldots 400 \mathrm{~W}$			
	$300 \ldots 600 \mathrm{~W}$,	Monitoring window	typically: $\pm 40 \mathrm{~W}$
:---	:---			
Response times typ.:	overload $200 \mathrm{~ms} . .2 \mathrm{~s}$ (depending on overload) short-circuit 200 ms underload 3 s			
Voltage rating	AC $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$			
Interrupting capacity	relay contact 8 A			
Dimmer operation	between 35 and 100% of the rated load stored			
Temperature range	$0 . .+45{ }^{\circ} \mathrm{C}$			
Degree of protection:	IP20 housing DIN 40050 IP20 terminals DIN 40050			
Housing	track-mountable housing (for DIN rails)			
Connection	screw terminals			
VDE approval	Reg. Nr. 8319 to VDE 0160			

Dimensions

E-1078-421-...

Housing for DIN rail mounting

Basic circuit diagram

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Instructions for installation and adjustment

For correct performance, the E-T-A Current Protector shall be used on the primary side before the low-voltage transformer. It should be connected behind the light switch and the dimmer, if any, into the line to the transformer.

Caution: Installation by skilled personnel only!

- Install the low-voltage system with the desired rated capacity.
- Set dimmer, if any, at the maximum value (turn button to right-side stop).
- Switch the light on.
- Keep storage button on the Protector pressed for approx. 5 sec to store the lamp load installed.
- The stored value will be maintained even when the lighting is switched off.
- A new rated load can be set by pressing the storage button again.

Caution:

- Observe max. transformer capacity!
- Eliminate unsymmetrical load on the power feed caused by halfwave operation.
- Use separate power cables when several low-voltage systems are operated in parallel.

Protective functions

Immediate disconnection upon short-circuit and overloads when additional lamps (loads) are connected.
Underload disconnection when lamps (loads) are removed or upon defective terminal connections.

Action in the event of faults:

Switch the lighting system off by means of the light switch. Remedy cause of failure (call in skilled personnel, if necessary!).

Possible faults:

- defective lamps
loose or broken terminals or screw connections
- short-circuit
- additional lamps

Reset function

- provided when the lighting is reconnected by switching the light switch on. The lamp load is not re-stored.
- If the load conditions have changed after remedying the fault, the Protector will switch off within max. 3 sec after reconnection. To re-store the lamp load, keep the button pressed for approx. 5 sec .

All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted

虎E-TAOCurrent Protector E-1078-422 /-432 /-482-...

Description

The E-T-A Current Protector is designed to monitor the primary current of low-voltage transformers for halogen fittings.
After system installation, the admissible current range can be stored by operating the storage button (or light switch, with type E-1078-482-...). If the admissible range is exceeded (e. g. by overloads or short-circuit), the Protector will immediately disconnect the system. Underload (e. g. through defective terminal connections) will also cause system disconnection.
Fault conditions are indicated by the integral LED. The system can be reconnected by turning the light switch on again once the cause of failure has been remedied.

Typical applications

- Low-voltage halogen lighting systems
- Can generally be used with sensor touch dimmers (please enquire)
- Suitable for installation in transformer housing or close to transformer (in inaccessible areas, E-1078-482-...)
- Low-voltage transformers (no electronic transformers)

Features

- Eliminating fire hazard
- Storage of actual lamp load by button (or light switch, with type E-1078-482-...)
- Reset function by light switch
- LED fault indication
- Suitable for lighting systems with dimmers
- Passive relay for long use
- Housing for surface mounting
- Unaffected by inrush currents

Ordering information

Type No.	
E-1078-4 Current Protector for low voltage lighting systems	
	Version
	2 with storage button, capacity up to 400 W
	3 with storage button, capacity up to 600 W
	8 load storage by light switch, capacity up to 600 W
	Housing
	2 housing for surface mounting
	3 without housing (without VDE logo)
	Voltage rating
	AC 230 V voltage rating AC 230 V
	AC 120 V voltage rating AC 120 V (please enquire)
	Rated load
	60-300 W lamp capacity 60...300 W (AC 230 V only)
	100-300 W lamp capacity 100...300 W (AC 120 V only)
	100-400 W lamp capacity 100...400 W (AC 230 V only)
	300-600 W lamp capacity 300...600 W (AC 230 V only)
E-1078-4	2 2-AC 230 V-100-400 W ordering example

Technical data

Protective function	short-circuit, overload, underload
Lamp load	60... 300 W (AC 230 V only) 100... 300 W (AC 120 V only) 100... 400 W (AC 230 V only) 300... 600 W (AC 230 V only)
Monitoring window	typically: $\pm 40 \mathrm{~W}$
Response times typ.:	overload $200 \mathrm{~ms} . .2 \mathrm{~s}$ (depending on overload) short-circuit 200 ms underload 3 s
Voltage rating	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz} \\ & \mathrm{AC} 120 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz} \end{aligned}$
Interrupting capacity	relay contact 8 A
Dimmer operation	between 35 and 100% of the rated load stored
Temperature range	0... $+60{ }^{\circ} \mathrm{C}$
Housing	surface mounted type
Degree of protection:	IP20 housing DIN 40050 IP20 terminals DIN 40050
Connection	screw terminals
VDE approval	Reg. Nr. 8319 to VDE 0160
UL-approval	AC $120 \mathrm{~V}, 300 \mathrm{~W}, 60 \mathrm{~Hz}$, to UL 1077

Dimensions

E-1078-422-

Surface housing

Basic circuit diagram

This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Instructions for installation and adjustment

For correct performance, the E-T-A Current Protector must be used on the primary side before the low-voltage transformer. It should be connected behind the light switch and the dimmer, if any, into the line to the transformer.

Caution: Installation by qualified personnel only!

- Install the low-voltage system with the desired rated capacity.
- Set dimmer, if any, at the maximum value (turn knob fully clockwise).
- Switch on light.
- Storage of lamp load

With version -422/-432 (with storage button):
Keep storage button pressed for approx. 5 s to store lamp load installed.

With version -482 (storage by light switch):

- The lighting will be on for a short time and will go out after max 0.2 sec (the Protector which has not yet been set senses an overload and disconnects the system).
- Turn light switch OFF and ON within 0.5 s to store the actual rated load. Storage takes approx. 20 s ; do not switch off the lighting during this period!
- A new rated load can only be set after the Protector has responded to a fault.
- The stored value will be maintained even when the lighting is switched off

Caution:

- Observe max. transformer capacity!
- Eliminate any unsymmetrical loading of the power feed caused by half-wave operation
- Use separate power cables when several low-voltage systems are operated in parallel.

Protective functions

Immediate disconnection upon short-circuit and overload when additional lamps (loads) are connected.
Underload disconnection when lamps are removed or in the event of defective terminal connections.

Action in the event of faults:

- Switch off the lighting system by means of the light switch.
- Remedy cause of failure (call in qualified personnel, if necessary!).

Possible faults:

- defective lamps
- loose or broken terminals or screw connectors
- short-circuit
- additional lamps

Reset function of the Protector:

- provided when the lighting is reconnected by switching the light switch on. The lamp load is not re-stored.
- If the load conditions have changed after remedying the fault, the Protector will disconnect within max. 3 s after reconnection of the lighting system.
- Re-storage of lamp load:

With version -422/-432 (load storage by storage button): Keep the storage button pressed for approx. 5 sec .

With version -482 (load storage by light switch)
Turn light switch OFF and ON within 0.5 s . Re-storage takes approx. 20 s ; do not switch off the lighting system during this period as this will interrupt the storage process.

居ETA゚ Combi Safety Protection E-1078-911

Decription

The Combi Safety Protection E-1078-911 allows the simultaneous connection of a washing machine and dryer (for example) without overloading the circuit. The dryer is disconnected during the heating cycle of the washing machine and automatically reconnected when the current consumption of the washing machine drops.
Other equipment combinations such as a dishwasher and a hotwater heater are also made possible, provided that one of the loads connected has an operating mode with a current consumption of less than 2 A (= reconnection threshold).

Typical applications

- Household
- Commercial premises (e. g. medical practices)
- Recreational vehicles

For the first time it is possible to simultaneously connect to the same socket two large appliances such as a washing machine and a hotwater heater and to leave them unattended, without the danger and inconvenience of overloading the supply.
There is no need for a second line with socket and circuit breaker.

Features

- Reliable current monitoring when two large appliances are operated simultaneously.

Ordering information

Type No.

E-1078-911 Combi Safety Protection
E-1078-911

Technical data

Voltage rating	AC $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$
Supply current	16 A
Load capacity	$3,700 \mathrm{VA}$
Socket outlets with earthing contact to DIN 49440	
Cable	$\mathrm{H} 05 \mathrm{~W}-\mathrm{F} 3 \mathrm{G} 1.0 \mathrm{~mm}{ }^{2}$, approx. 1.4 m long with moulded earthing-pin plug
Upper response threshold	typically $15.5 \pm 1 \mathrm{~A}$
Lower response threshold	typically $2.0 \mathrm{~A} \pm 1 \mathrm{~A}$
Hysteresis	typically 13.5 A
Temperature range	$0 . .+45^{\circ} \mathrm{C}$
Environmental duty	suitable for dry, clean conditions
Socket outlet material	impact-resistant Polypropylene
Housing dimensions	$255 \mathrm{~mm} \times 60 \mathrm{~mm} \times 40 \mathrm{~mm}(\mathrm{LxWxH})$, with provisions for screw fixings
Mass	approx. 480 g

Caution: Connect appliances with a program memory that is not protected from supply failure, to the "washing machine" outlet!

Approvals

C
CE mark to demonstrate compliance with applicable directives.

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Switching curve

All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Description

The electronic E-T-A Voltage Monitor E-1079-60. is designed to monitor DC or AC voltages against falling below, or rising above, preset tolerance limits. Two LEDs indicate relay status or overlimits; an opto coupler output provides a physically isolated signal.
The device is available either with a (non-conducting) N/O or a (conducting) N/C contact. It is powered by the measuring signal so that there is no need for an additional power supply.

Features

- Voltage under and over limit monitoring (tolerance window)
- For DC and AC voltages between 5 V and 230 V
- DC and AC voltage output
- N/O or N/C contact (MOSFET)
- Status indication by red and green LEDs
- No need for separate power supply
- Reverse polarity protection
- Compact design (plug-in housing)
- 12 mm wide housing

Ordering information	
E-1079 Electronic Votage Monitor	
	601 signal output as NC coontact
	${ }_{\text {DC }}^{0} 48 \mathrm{~V}$
	DC 110 V
	DC 220 V
	${ }_{\text {AC }}{ }_{\text {AC } 230 \mathrm{~V}}$
600	DC 24V

Technical data

Input voltage U_{E}		
Voltage rating U_{N}	Tolerance	Tolerance range $\mathrm{U}_{\text {min }} \ldots \mathrm{U}_{\max }$
DC 12 V	± 25 \%	(9..15 V)
DC 24 V	± 25 \%	(18... 30 V)
DC 48 V	± 25 \%	(36... 60 V)
DC 110 V	+10 \%/-15 \%	(93.5... 121 V)
DC 220 V	+10 \%/-15 \%	(187... 242 V)
AC 115 V	+10 \%/-15 \%	(97.8..126.5 V)
AC 230 V	+10 \%/-15 \%	(195.5...253 V)
Load current 3 mA DC		nd AC
Dielectric strength	260 V DC and AC	
Reverse polarity protected		
Output $\mathrm{U}_{\mathrm{A}} / \mathrm{I}_{\mathrm{A}}$		
MOSFET output		
Max. load current	80 mA DC and AC	
Max. load voltage	250 V DC and AC	
Voltage drop	$<2.0 \mathrm{~V}$ with 80 mA load	
	$<0.8 \mathrm{~V}$ with 10 mA load	
Free-wheeling diode for		
non-resistive loads	in-built	
Polarization	optional	
Response time	200 mA	
Signalling green LED red LED	(> 5 V signal voltage) voltage within set tolerance limits voltage outside set tolerance limits	
Accuracy		
Undervoltage	$\mathrm{U}_{\text {min }}-10 \% \mathrm{U}_{\mathrm{N}} \ldots \mathrm{U}_{\text {min }}$	
Overvoltage	$\mathrm{U}_{\max \ldots} . . \mathrm{U}_{\max }+10 \% \mathrm{U}_{\mathrm{N}}$	
Environmental conditions		
Temperature range	$0 . .60{ }^{\circ} \mathrm{C}$ (without condensation)	
Degree of protection to DIN 40050/IEC 529		IP20
Dielectric strength		
(IEC 664)	4 kV rms	
EMC	to EN50081-1 and prEN50082-2	
Housing	plug-in ultramid housing	
Terminals	6.3 mm blade terminals to DIN 46244 to plug into E-T-A socket 17-P10-Si	
Mounting attitude	optional, no air gap between devices required	
Mass	28 g	

Function

The operating voltage applied at the input terminals is monitored for upper and lower limits. When the input signal is within tolerance limits, the green LED will indicate and the MOSFET of the signal output has the following operating status:

- N/O contact (-600): MOSFET is active
- N/C contact (-601): MOSFET is inactive

From approx. 5 V to the lower tolerance limit the red LED will indicate. It also indicates when the upper tolerance limit has been exceeded. The output will change its operating status.

Dimensions

E-1079-600

E-1079-601

Functional diagram

E-1079-601

Connection diagram

吾E-TA゚ Electronic Voltage Monitor E-1079-600/-601-...

Accessories for E-1079-600/601

Busbar (10-way) (supplied as a complete package)
for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for busbar (10-way)
Y 30382401

2-way mounting socket
23-P10-Si
6-way mounting socket $63-\mathrm{P} 10-\mathrm{Si}$
(retaining clip Y 30058103 available on request)

Connector bus links -P10

X $21058801 / 1.5 \mathrm{~mm}^{2}$, (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), blue (up to 20 A max. load)

2 mounting clips
 Y 30050402

(2 pcs needed per unit)

Installation drawing with mounting clips Y 30050402

[^32]All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications withou notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

[^0]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^1]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^2]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^3]: This is a metric design and millimeter dimensions take precedence ($\left(\frac{\mathrm{mm}}{\text { inch }}\right.$)

[^4]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\text { inch }}\right)$

[^5]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^6]: This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\text { inch }}\right)$

[^7]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^8]: This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^9]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^10]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^11]: This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^12]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^13]: $---+60^{\circ} \mathrm{C}$

[^14]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^15]: All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved.Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

[^16]: This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^17]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^18]: 8345-C 01 A - U3 M1 - D B1 B1 B

[^19]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^20]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^21]: to DIN 57106T100/VDE 0106 T100

[^22]: see types 437, 921 or 922

[^23]: This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^24]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^25]: All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and

[^26]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^27]: 13, 14 terminals for group signalisation
 11 feed for single signalisation
 12 terminal for single signalisation

[^28]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

[^29]: X31 signalisation terminal
 AS signal output group A (F3 ... F4)
 B signal output group B (F1 ... F2)
 $+\quad+$ DC 24 V from terminal 21, internally prewired and protected by CB1
 GR
 line feed two-group signalisation with insulation bridge*
 auxiliary contact ESS20-003, make contact

[^30]: 1) When mounted side-by-side or fully fitted with thermal-magnetic circuit breaker types 2210 , 3600 or 3900, each breaker should only carry 80% of its rating or a higher rating should be chosen.
 2) For failure signalisation and for cascading functions on the master-slave principle the plug-in type signalisation module SIGMO-09-1xx is required. See accessories.
[^31]: This is a metric design and millimeter dimensions take precedence ($\left.\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

[^32]: This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

